Back to Search Start Over

Data from Microenvironmental Regulation of Glioblastoma Radioresponse

Authors :
Philip J. Tofilon
Kevin Camphausen
Eli S. Williams
Barbara H. Rath
Muhammad Jamal
Publication Year :
2023
Publisher :
American Association for Cancer Research (AACR), 2023.

Abstract

Purpose: Brain tumor xenografts initiated from human glioblastoma (GBM) stem-like cells (TSC) simulate the biological characteristics of GBMs in situ. Therefore, to determine whether the brain microenvironment affects the intrinsic radiosensitivity of GBM cells, we compared the radioresponse of GBM TSCs grown in vitro and as brain tumor xenografts.Experimental Design: As indicators of DNA double-strand breaks (DSB), γH2AX, and 53BP1 foci were defined after irradiation of 2 GBM TSC lines grown in vitro and as orthotopic xenografts in nude mice. Microarray analysis was conducted to compare gene expression patterns under each growth condition.Results: Dispersal of radiation-induced γH2AX and 53BP1 foci was faster in the tumor cells grown as orthotopic xenografts compared with cells irradiated in vitro. In addition, cells irradiated in vivo were approximately 3-fold less susceptible to foci induction as compared with cells grown in vitro. Microarray analysis revealed a significant number of genes whose expression was commonly affected in the 2 GBM models by orthotopic growth conditions. Consistent with the decrease in sensitivity to foci induction, genes related to reactive oxygen species (ROS) metabolism were expressed at higher levels in the brain tumor xenografts.Conclusion: γH2AX and 53BP1 foci analyses indicate that GBM cells irradiated within orthotopic xenografts have a greater capacity to repair DSBs and are less susceptible to their induction than tumor cells irradiated under in vitro growth conditions. Because DSB induction and repair are critical determinants of radiosensitivity, these results imply that the brain microenvironment contributes to GBM radioresistance.Clin Cancer Res; 16(24); 6049–59. ©2010 AACR.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ac8d269fcb078566fa3e1b3aa235d40a
Full Text :
https://doi.org/10.1158/1078-0432.c.6519408.v1