Back to Search Start Over

Synthesis, structure and superconducting properties of laminated thin film composites of YBа2 Cu3 O7–d /Y2 O3 as components of 2G HTS wires

Authors :
Alexander E. Shchukin
Andrey R. Kaul
Alexander L. Vasiliev
Igor A. Rudnev
Source :
Конденсированные среды и межфазные границы, Vol 23, Iss 1, Pp 122-139 (2021)
Publication Year :
2021
Publisher :
Voronezh State University, 2021.

Abstract

2G HTS wires are capable of transferring huge amounts of electrical energy without loss. An increase in the current-carrying capacity in these materials is possible due to an increase in the thickness of the superconducting layer; however, there is a problem with the appearance of impurity orientations and other defects with increasing thickness. We have proposed a solution of this problem by increasing the thickness of the superconducting layer by the MOCVD method using interlayers of yttrium oxide.The aim of this study was the production of thick composite films with yttrium oxide interlayers and high critical current density. In addition, we want to show the effectiveness of the approach of introducing yttrium oxide interlayers for the reduction of the number of parasitic orientations and defects with an increase in HTS film thickness.The deposition of YBа2Cu3O7–dand Y2O3 films was carried out layer by layer using reel-to-reel MOCVD equipment. A 12 mm wire of the following architecture was used as a substrate: 200 nm CeO2(Gd2O3)/30–50 nm LaMnO3/5–7 nm IBAD-MgO/50 nm LaMnO3/50 nm Al2O3/60 μ Hastelloy 276. The resulting films were annealed in oxygen for obtaining the orthorhombic YBCO phase. YBа2Cu3O7–d/Y2O3composites were obtained. In these composites, obtained using the MOCVD method, the amount of side (с║) orientation of the HTS layer was reduced and high values of the critical current density, exceeding 1 MA/cm at a thickness of > 2 μm remained. The efficiency of the approach of introducing yttrium oxide interlayers for the increase in the current characteristics with increasing film thickness was shown. It was found that further thickening of films with interlayers is prevented by the formation of nanopores, reducing the critical current density. REFERENCES 1. Fleshler S., Buczek D., Carter B., Ogata M. Scaleup of 2G wire manufacturing at American Superconductor Corporation. Physica C. 2009;469(15-20): 1316–1321. https://doi.org/10.1016/j.physc.2009.05.234 2. Nagaishi T., Shingai Y., Konishi M., Taneda T., Ota H., Honda G., Kato T., Ohmatsu K. Development of REBCO coated conductors on textured metallic substrates. Physica C. 2009;469(15-20): 1311–1315. https://doi.org/10.1016/j.physc.2009.05.2533. Rosner C. H. Superconductivity: star technology for the 21st century. IEEE Transactions on Applied Superconductivity. 2001;11(1): 39–48. https://doi.org/10.1109/77.919283 4. Mansour R. R. Microwave superconductivity. IEEE Transactions on Microwave Theory and Techniques. 2002;50(3): 750–759. https://doi.org/10.1109/22.989959 5. Hayakawa H., Yoshikawa N., Yorozu S., Fujimaki A. Superconducting digital electronics. Proceedings of the IEEE. 2004;92(10): 1549–1563. https://doi.org/10.1109/JPROC.2004.8336586. Wimbush S. C. Large scale applications of HTS in New Zealand. Physics Procedia. 2015;65: 221–224. https://doi.org/10.1016/j.phpro.2015.05.1257. Zhu J., Zheng X., Qiu M., Zhang Z., Li J., Yuan W. Application simulation of a resistive type superconducting fault current limiter (SFCL) in a transmission and wind power system. Energy Procedia. 2015;75: 716–721. https://doi.org/10.1016/j.egypro.2015.07.4988. Iwasaki H., Inaba S., Sugioka K., Nozaki Y., Kobayashi N. Superconducting anisotropy in the Y-based system substituted for the Y, Ba and Cu sites. Physica C. 1997;290: 113. https://doi.org/10.1016/S0921-4534(97)00634-59. Freyhardt H. C., Hellstrom E. E. High-temperature superconductors: A Review of YBa2Cu3O6+x and (Bi,Pb)2Sr2Ca2Cu3O10. Cryogenic Engineering. New York:Springer; 2007. pp. 309–339. https://doi.org/10.1007/0-387-46896-X10. Dimos D., Chaudhari P., Mannhart J. Superconducting transport properties of grain boundaries in YBa2Cu3O7bicrystals. Phys. Rev. B. 1990;41: 4038–4049. http://dx.doi.org/10.1103/PhysRevB.41.403811. Goyal A. (ed.) Second-Generation HTS Conductors. Boston/Dordrecht/New York/London: Kluwer Academic Publ.; 2009. 432 p. 12. Zhang H., Yang J., Wang S., Wu Y., Lv Q., Li S. Film thickness dependence of microstructure and superconductive property of PLD prepared YBCO layers. Physica C. 2014;499: 54–56. https://doi.org/10.1016/j.physc.2014.01.00113. Markelov A. V., Samoilenkov S. V., Akbashev A. R., Vasiliev A. L., Kaul A. R. Control of orientation of RBa2Cu3O7films on substrates with low lattice mismatch via seed layer formation. IEEE Transactions on Applied Superconductivity. 2011;21(3): 3066–3069. https://doi.org/10.1109/TASC.2010.210299214. Granozio F. M., Salluzzo M., Scotti di Uccio U., Maggio-Aprile I., Fischer O. Competition between a-axis and c-axis growth in superconducting RBa2Cu3O7−x thin films. Phys. Rev. B. 2000;61(1): 756–765. https://doi.org/10.1103/PhysRevB.61.75615. Jeschke R. Schneider G. Ulmer G. Linker influence of the substrate material on the growth direction of YBaCuO thin films. Physica C. 1995;243: 243–251. https://doi.org/10.1016/0921-4534(95)00019‑416. Moyzykh M., Boytsova O., Amelichev V, Samoilenkov S., Voloshin I., Kaul A., Lacroix B., Paumier F., Gaboriaud R. Effects of yttrium oxide inclusions on the orientation and superconducting properties of YBCO films. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2013;15(2): 91-98. Available at: http://www.kcmf.vsu.ru/resources/t_15_2_2013_001.pdf17. 2G HTS Wire Specification Overview. Available at: http://www.superpower-inc.com/system/filesSP_2G+Wire+Spec+Sheet_2014_web_v1_0.pdf (accessed 29 October 2016).18. Murakami M., Gotoh S., Fujimoto H., Yamaguchi K., Koshizuka N., Tanaka S. Flux pinning and critical currents in melt processed YBaCuO superconductors. Superconductor Science and Technology . 1991;4: S43–S50. https://doi.org/10.1088/0953-2048/4/1S/00519. Zhao P., Ito A., Goto T. Rapid deposition of YBCO films by laser CVD and effect of lattice mismatch on their epitaxial growth and critical temperature.Ceramics International. 2013;39: 7491–7497. https://doi.org/10.1016/j.ceramint.2013.02.09820. Zhao P., Ito A., Goto T., Tu R. High-speed growth of YBa2Cu3O7−d film with high critical temperature on MgO single crystal substrate by laser chemical vapor deposition. Superconductor Science and Technology. 2010;23(12): 125010. https://doi.org/10.1088/0953-2048/23/12/12501021. Zhao P., Ito A., Goto T., Tu R. Fast epitaxial growth of a-axis- and c-axis-oriented YBa2Cu3O7–dfilms on (1 0 0) LaAlO3substrate by laser chemical vapor deposition. Applied Surface Science. 2010;257: 4317–4320. https://doi.org/10.1016/j.apsusc.2010.12.04722. Hammond R. H., Bormann R. Correlation between the in situ growth conditions of YBCO thin films and the thermodynamic stability criteria. Physica C. 1989;162-164: 703–704. https://doi.org/10.1016/0921-4534(89)91218-5 23. Voronin G. F., Degterov S. A. Solid State Equilibria in the Ba-Cu-O System. J. Solid State Chem. 1994;110(1): 50–57. (and references therein). https://doi.org/10.1006/jssc.1994.113424. Lindemer T. B., Specht E. D. The BaO-Cu-CuO system. Solid-liquid equilibria and thermodynamics of BaCuO2and BaCu2O2. Physica C. 1995;255(1-2): 81–94. (and references therein). https://doi.org/10.1016/0921-4534(95)00460-225. Samoylenkov S. V., Gorbenko O. Yu, Graboy I. E., Kaul A. R., Zandbergen H. W., Connolly E. Secondary phases in (001)RBa2Cu3O7–depitaxial thin films. Chemistry of Materials. 1999:11(9): 2417–2428. https://doi.org/10.1021/cm991016v26. Kaul A. R., Gorbenko O. Yu., Kamenev A. A. The role of heteroepitaxy in the development of new thin film oxide-based functional materials. Russian Chemical Reviews. 2004;73(9): 932–953. https://doi.org/10.1070/RC2004v073n09ABEH00091927. Murakami Y., Goto H., Taguchi Y., Nagasaka Y. Measurement of out-of-plane thermal conductivity of epitaxial YBa2Cu3O7–dthin films in the temperature range from 10 K to 300 K by photothermal reflectance. International Journal of Thermophysics. 2017;38(10): 160. https://doi.org/10.1007/s10765-017-2294-728. Agababov S. G., Vliyanie sherohovatosti poverhnosti tverdogo tela na ego radiatsionnie svoistva I metody ih eksperimentalnogo opredeleniya[Influence of the surface roughness of a solid on its radiation properties and methods of their experimental determination]. Teplofizika visokih temperatur. 1968;6(1): 78–88. (In Russ.)29. Sayapina V. I., Svet D. Ya., Popova О. R., Vliyanie sherohovatosti poverhnosti na izluchatelnuyu sposobnost metallov [Influence of surface roughness on the emissivity of metals]. Teplofizika visokih temperatur. 1972;10(3): 528–535. (In Russ.)30. Mukaida M., Miyazawa S. Nature of preferred orientation of YBa2Cu3Oxthin films. Japanese Journal of Applied Physics. 1993;32(10): 4521–4528. https://doi.org/10.1143/jjap.32.452131. Markelov A. V. The influence of buffer layers on the oriented growth of RBa2Cu3O7–d (R – rare earth element) films and their superconducting characteristics.Thesis of Cand. in Chem. Moscow: MSU (Lomonosov University); 2011. 108р.

Details

ISSN :
26870711 and 09214534
Volume :
23
Database :
OpenAIRE
Journal :
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
Accession number :
edsair.doi.dedup.....ac8ba472ef107c6bd80afa8156e57008