Back to Search
Start Over
Cardiomyocyte PDGFR-β signaling is an essential component of the mouse cardiac response to load-induced stress
- Publication Year :
- 2010
- Publisher :
- American Society for Clinical Investigation, 2010.
-
Abstract
- PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.
- Subjects :
- medicine.medical_specialty
Angiogenesis
Regulator
PDGFRB
Biology
Receptor, Platelet-Derived Growth Factor beta
Weight-Bearing
Paracrine signalling
Mice
Internal medicine
Coronary Circulation
medicine
Myocyte
Animals
Myocytes, Cardiac
Phosphorylation
neoplasms
Heart Failure
Mice, Knockout
Cardiotoxicity
Body Weight
Heart
Stroke Volume
General Medicine
Organ Size
medicine.disease
musculoskeletal system
Mice, Inbred C57BL
Endocrinology
Heart failure
embryonic structures
Cancer research
cardiovascular system
Signal transduction
tissues
Research Article
Signal Transduction
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....ac6a0cf5e306921a69d00ad46dff27fe