Back to Search Start Over

Wurtzite quantum well structures under high pressure

Authors :
Pawel Strak
Kamil Sobczak
Eva Monroy
Agata Kaminska
Kamil Koronski
Stanislaw Krukowski
Institute of Physics, Polish Academy of Sciences
Polska Akademia Nauk = Polish Academy of Sciences (PAN)
Institute of High Pressure Physics [Warsaw] (IHPP)
University of Warsaw (UW)
Nanophysique et Semiconducteurs (NPSC)
PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Source :
Journal of Applied Physics, Journal of Applied Physics, American Institute of Physics, 2020, 128 (5), pp.050901. ⟨10.1063/5.0004919⟩, Journal of Applied Physics, 2020, 128 (5), pp.050901. ⟨10.1063/5.0004919⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Quantum well systems based on semiconductors with the wurtzite crystalline structure have found widespread applications in photonics and optoelectronic devices, such as light-emitting diodes, laser diodes, or single-photon emitters. In these structures, the radiative recombination processes can be affected by (i) the presence of strain and polarization-induced electric fields, (ii) quantum well thickness fluctuations and blurring of a well–barrier interface, and (iii) the presence of dislocations and native point defects (intentional and unintentional impurities). A separate investigation of these phenomena is not straightforward since they give rise to similar effects, such as a decrease of luminescence efficiency and decay rate, enhancement of the Stokes shift, and strong blueshift of the emission with increasing pump intensity. In this Perspective article, we review the usefulness of measurements of the quantum well luminescence as a function of the hydrostatic pressure for both scientific research and the development of light-emitting technologies. The results presented here show that high-pressure investigations combined with ab initio calculations can identify the nature of optical transitions and the main physical factors affecting the radiative efficiency in quantum well systems. Finally, we will discuss an outlook to the further possibilities to gain new knowledge about the nature of recombination processes in quantum wells using high-pressure spectroscopy.

Details

Language :
English
ISSN :
00218979 and 10897550
Database :
OpenAIRE
Journal :
Journal of Applied Physics, Journal of Applied Physics, American Institute of Physics, 2020, 128 (5), pp.050901. ⟨10.1063/5.0004919⟩, Journal of Applied Physics, 2020, 128 (5), pp.050901. ⟨10.1063/5.0004919⟩
Accession number :
edsair.doi.dedup.....ac35112be872008c5a287375e1979620