Back to Search Start Over

Radiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase

Authors :
Wael Y. Mansour
Thorsten Rieckmann
Sabrina Köcher
Jochen Dahm-Daphi
Ekkehard Dikomey
Irena Dornreiter
Gabor Rohaly
Source :
Nucleic Acids Research
Publication Year :
2012
Publisher :
Oxford University Press (OUP), 2012.

Abstract

Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.

Details

ISSN :
13624962 and 03051048
Volume :
40
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....ac2995ac847605b8fe188f507a69739b
Full Text :
https://doi.org/10.1093/nar/gks604