Back to Search
Start Over
Preparation and Characterization of Electrospun Fluoro-Containing Poly(imide-benzoxazole) Nano-Fibrous Membranes with Low Dielectric Constants and High Thermal Stability
- Source :
- Nanomaterials, Nanomaterials, Vol 11, Iss 537, p 537 (2021), Volume 11, Issue 2
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- The rapid development of advanced high-frequency mobile communication techniques has advanced urgent requirements for polymer materials with high-temperature resistance and good dielectric properties, including low dielectric constants (low-Dk) and low dielectric dissipation factors (low-Df). The relatively poor dielectric properties of common polymer candidates, such as standard polyimides (PIs) greatly limited their application in high-frequency areas. In the current work, benzoxazole units were successfully incorporated into the molecular structures of the fluoro-containing PIs to afford the poly(imide-benzoxazole) (PIBO) nano-fibrous membranes (NFMs) via electrospinning fabrication. First, the PI NFMs were prepared by the electrospinning procedure from organo-soluble PI resins derived from 2,2’-bis(3,4-dicarboxy-phenyl)hexafluoropropane dianhydride (6FDA) and aromatic diamines containing ortho-hydroxy-substituted benzamide units, including 2,2-bis[3-(4-aminobenzamide)-4-hydroxylphenyl]hexafluoropropane (p6FAHP) and 2,2-bis[3-(3-aminobenzamide)-4-hydroxyphenyl]hexafluoropropane (m6FAHP). Then, the PI NFMs were thermally dehydrated at 350 °C in nitrogen to afford the PIBO NFMs. The average fiber diameters (dav) for the PIBO NFMs were 1225 nm for PIBO-1 derived from PI-1 (6FDA-p6FAHP) precursor and 816 nm for PIBO-2 derived from PI-2 (6FDA-m6FAHP). The derived PIBO NFMs showed good thermal stability with the glass transition temperatures (Tgs) over 310 °C and the 5% weight loss temperatures (T5%) higher than 500 °C in nitrogen. The PIBO NFMs showed low dielectric features with the Dk value of 1.64 for PIBO-1 and 1.82 for PIBO-2 at the frequency of 1 MHz, respectively. The Df values were in the range of 0.010~0.018 for the PIBO NFMs.
- Subjects :
- nano-fibrous membrane
chemistry.chemical_classification
Materials science
General Chemical Engineering
Dielectric
Polymer
Benzoxazole
polyimide
Article
Electrospinning
lcsh:Chemistry
chemistry.chemical_compound
Membrane
lcsh:QD1-999
chemistry
Chemical engineering
dielectric properties
General Materials Science
Thermal stability
Glass transition
electrospinning
Polyimide
polybenzoxazole
Subjects
Details
- ISSN :
- 20794991
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Nanomaterials
- Accession number :
- edsair.doi.dedup.....ac11691c3f336e481ab968380fa152fd
- Full Text :
- https://doi.org/10.3390/nano11020537