Back to Search Start Over

Møller operators and Hadamard states for Dirac fields with MIT boundary conditions

Authors :
Nicoló Drago
Nicolas Ginoux
Simone Murro
Università degli Studi di Trento (UNITN)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques d'Orsay (LMO)
Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Ginoux, Nicolas
Source :
HAL

Abstract

The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary. This is achieved by introducing a geometric Møller operator which implements a unitary isomorphism between the spaces of $L^2$ -initial data of particular symmetric systems we call weakly-hyperbolic and which are coupled with admissible boundary conditions. In particular, we show that for Dirac fields with MIT boundary conditions, this isomorphism can be lifted to a $*$-isomorphism between the algebras of Dirac fields and that any Hadamard state can be pulled back along this $*$-isomorphism preserving the singular structure of its two-point distribution.<br />34 pages, 4 figures

Details

Database :
OpenAIRE
Journal :
HAL
Accession number :
edsair.doi.dedup.....abd219a8dc51417bff2447fbf9f614bd