Back to Search Start Over

Weakly nonlinear surface waves in magnetohydrodynamics

Authors :
Pierre, Olivier
Coulombel, Jean-François
Equations aux dérivées partielles
Laboratoire de Mathématiques Jean Leray (LMJL)
Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
ANR-13-BS01-0009,BoND,Frontières, numérique, dispersion.(2013)
ANR-17-CE40-0025,Nabuco,Frontières numériques et couplages(2017)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Asymptotic Analysis, Asymptotic Analysis, IOS Press, 2021, 123 (3-4), pp.367-401, Asymptotic Analysis, 2021, 123 (3-4), pp.367-401
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

International audience; This work is devoted to the construction of weakly nonlinear, highly oscillating, current vortex sheet solutions to the incompressible magnetohydrodynamics equations. Current vortex sheets are piecewise smooth solutions to the incompressible magnetohydrodynamics equations that satisfy suitable jump conditions for the velocity and magnetic field on the (free) discontinuity surface. In this work, we complete an earlier work by Ali and Hunter and construct approximate solutions at any arbitrarily large order of accuracy to the free boundary problem in three space dimensions when the initial discontinuity displays high frequency oscillations. As evidenced in earlier works, high frequency oscillations of the current vortex sheet give rise to `surface waves' on either side of the sheet. Such waves decay exponentially in the normal direction to the current vortex sheet and, in the weakly nonlinear regime that we consider here, their leading amplitude is governed by a nonlocal Hamilton-Jacobitype equation known as the `HIZ equation' (standing for Hamilton-Il'insky-Zabolotskaya) in the context of Rayleigh waves in elastodynamics. The main achievement of our work is to develop a systematic approach for constructing arbitrarily many correctors to the leading amplitude. Based on a suitable duality formula, we exhibit necessary and sufficient solvability conditions for the corrector equations that need to be solved iteratively. Theverification of these solvability conditions is based on a combination of mere algebra and arguments of combinatorial analysis. The construction of arbitrarily many correctors enables us to produce infinitely accurate approximate solutions to the free boundary problem. Eventually, we show that the rectification phenomenon exhibited by Marcou in the context of Rayleigh waves does not arise in the same way for the current vortex sheet problem.

Details

ISSN :
09217134 and 18758576
Database :
OpenAIRE
Journal :
Asymptotic Analysis, Asymptotic Analysis, IOS Press, 2021, 123 (3-4), pp.367-401, Asymptotic Analysis, 2021, 123 (3-4), pp.367-401
Accession number :
edsair.doi.dedup.....abc08e56bf59d96203e0b0cba3a21245
Full Text :
https://doi.org/10.48550/arxiv.1807.00536