Back to Search Start Over

Sb2Se3 Polycrystalline Thin Films Grown on Different Window Layers

Authors :
Stefano Pasini
Donato Spoltore
Antonella Parisini
Gianluca Foti
Stefano Marchionna
Salvatore Vantaggio
Roberto Fornari
Alessio Bosio
Source :
Coatings, Volume 13, Issue 2, Pages: 338
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Sb2Se3 is a typical V2VI3 binary chalcogenide compound characterized by a single crystalline phase and a fixed composition. Sb2Se3 displays a narrow energy gap ranging from 1.1 to 1.3 eV, which are quite optimal values for single-junction solar cells. Earth-abundant and non-toxic components make this material a good candidate for low-cost thin-film solar cells. In substrate configuration, a world record efficiency of 9.2% was recently obtained. Sb2Se3 thin films exhibit an accentuated predisposition to form (Sb4Se6)n ribbons along the [001] direction. This anisotropy heavily influences the charge transport of the photogenerated carriers. In this work, structural characterization of the Sb2Se3 films showed that the crystalline quality and preferential orientation are strongly dependent on the window layer used. To better understand the growth mechanism, Sb2Se3 thin films were deposited by close-spaced sublimation on five different window layers, such as CdS, CdS:F, CdSe, As2S3, and ZnCdS. Sb2Se3-based solar cells, realized in superstrate configuration on these different substrates, evidently demonstrate the influence of the Sb2Se3 preferential orientation on the photovoltaic parameters.

Details

ISSN :
20796412
Volume :
13
Database :
OpenAIRE
Journal :
Coatings
Accession number :
edsair.doi.dedup.....abacd379e9ca7fe7c8003403940f0390
Full Text :
https://doi.org/10.3390/coatings13020338