Back to Search Start Over

Numerical simulation of the general circulation of the Cytherean lower atmosphere

Authors :
Sergej Zilitinkevich
V. G. Turikov
A. S. Monin
A. S. Safray
D. V. Chalikov
Source :
Icarus. 26:178-208
Publication Year :
1975
Publisher :
Elsevier BV, 1975.

Abstract

The principal features which distinguish the atmosphere on Venus from that of the Earth are the slow rotation of the planet, the large mass of the atmosphere, and the opacity of the atmosphere to long-wave radiation. The slow rotation of the planet gives rise, first of all, to nongeostrophuc dynamics (the atmosphere gas has a tendency to move along the pressure gradient), with the result that the region of the main influx of solar energy is located on one side of the planet, and the region of maximum cooling on the other. These considerations lead to a much simpler scheme of circulation than that in the Earth's atmosphere. The large mass of the atmosphere is the cause of a high thermal and mechanical inertia, which explains why the atmospheric circulation is asymmetrical relative to the solar-antisolar axis. The daily center of circulation is displaced to the second half of the Cytherean solar day, i.e., to the line of zero budget of thermal energy corresponding to a height of the Sun abobe the horizon of about 20°. The notions of cold and warm regions are very relative for Venus. While the horizontal temperature differences on the Earth may reach 100°, a mean horizontal temperature drop as small as 3° in the Cytherean atmosphere may be looked upon as an exceptional phenomenon. This high thermal homogeneity is due to a very large thermal inertia, with cooling at the poles never manifesting itself in the temperature fields obtained. The opacity of the Cytherean atmosphere to long-wave radiation results in vertical heat transfer by turbulence, mesoscale convection, and large-scale currents. This produces adiabatic stratification in the troposphere and a high temperature in the lower layers. These phenomena were studied in a general manner using two- and three-level models. Steps have recently been undertaken to investigate in greater detail the vertical structure of the troposphere on Venus using ten-level models. It appeared that the vertical dynamic structure of the troposphere is very much dependent on the distribution in height of the solar energy influx. In the greenhouse model, the entire atmosphere is affected by circulation. Pronounced velocity maxima are observed in the lower and upper layers. In a model with adsorption of solar radiation in the upper layer, the velocity is small in the lower layers, but it rapidly increases and changes its direction several times in the upper layers. The mean kinetic energy of the atmosphere proves to be two to three times smaller than in the greenhouse model. Attempts have been made in the calculations to find the principal modes of the statistical fluctuations. The results obtained show that atmospheric circulation may be represented by a global mean basic state following the rotation of the planet with deviations from that basic state which are indeterminate disturbances. The mean basic state exhibits a high degree of symmetry relative to the equator. On account of nonlinearity, the disturbances were observed in all the models independently of space and time resolution. This phenomenon appears to reflect the actual properties of the Cytherean atmosphere and has no bearing on the details of the numerical scheme.

Details

ISSN :
00191035
Volume :
26
Database :
OpenAIRE
Journal :
Icarus
Accession number :
edsair.doi.dedup.....ab72d2f9c2379ddd523f092a53ad6713
Full Text :
https://doi.org/10.1016/0019-1035(75)90079-2