Back to Search
Start Over
Ribosome-dependent activation of stringent control
- Source :
- Nature
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.
- Subjects :
- Models, Molecular
0301 basic medicine
Adenosine
Protein Conformation
Stringent response
Guanosine Tetraphosphate
GTPase
RNA, Transfer, Amino Acyl
Biology
Second Messenger Systems
Ribosome
Article
GTP Pyrophosphokinase
03 medical and health sciences
RNA, Transfer
Stress, Physiological
Escherichia coli
Protein biosynthesis
Amino Acids
Phosphorylation
Binding Sites
Multidisciplinary
030102 biochemistry & molecular biology
Escherichia coli Proteins
Cryoelectron Microscopy
RNA
Gene Expression Regulation, Bacterial
Protein Structure, Tertiary
A-site
030104 developmental biology
Biochemistry
Protein Biosynthesis
Transfer RNA
Ribosomes
Metabolic Networks and Pathways
Subjects
Details
- ISSN :
- 14764687 and 00280836
- Volume :
- 534
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi.dedup.....aafddff91dea0c0297c824015211536c
- Full Text :
- https://doi.org/10.1038/nature17675