Back to Search Start Over

Entropy minimization for many-body quantum systems

Authors :
Olivier Pinaud
Romain Duboscq
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Colorado State University [Fort Collins] (CSU)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

The problem considered here is motivated by a work by Nachtergaele and Yau where the Euler equations of fluid dynamics are derived from many-body quantum mechanics, see (Commun Math Phys 243(3):485–540, 2003). A crucial concept in their work is that of local quantum Gibbs states, which are quantum statistical equilibria with prescribed particle, current, and energy densities at each point of space (here $${\mathbb {R}}^d$$ , $$d \ge 1$$ ). They assume that such local Gibbs states exist, and show that if the quantum system is initially in a local Gibbs state, then the system stays, in an appropriate asymptotic limit, in a Gibbs state with particle, current, and energy densities now solutions to the Euler equations. Our main contribution in this work is to prove that such local quantum Gibbs states can be constructed from prescribed densities under mild hypotheses, in both the fermionic and bosonic cases. The problem consists in minimizing the von Neumann entropy in the quantum grand canonical picture under constraints of local particle, current, and energy densities. The main mathematical difficulty is the lack of compactness of the minimizing sequences to pass to the limit in the constraints. The issue is solved by defining auxiliary constrained optimization problems, and by using some monotonicity properties of equilibrium entropies.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....aae8b67ed055c401702cb610df2c6690
Full Text :
https://doi.org/10.48550/arxiv.2103.07310