Back to Search Start Over

Temperature-aware microarchitecture

Authors :
Sivakumar Velusamy
Kevin Skadron
Mircea R. Stan
David Tarjan
Wei Huang
Karthik Sankaranarayanan
Source :
ISCA
Publication Year :
2003
Publisher :
ACM Press, 2003.

Abstract

With power density and hence cooling costs rising exponentially, processor packaging can no longer be designed for the worst case, and there is an urgent need for runtime processor-level techniques that can regulate operating temperature when the package's capacity is exceeded. Evaluating such techniques, however, requires a thermal model that is practical for architectural studies.This paper describes HotSpot, an accurate yet fast model based on an equivalent circuit of thermal resistances and capacitances that correspond to microarchitecture blocks and essential aspects of the thermal package. Validation was performed using finite-element simulation. The paper also introduces several effective methods for dynamic thermal management (DTM): "temperature-tracking" frequency scaling, localized toggling, and migrating computation to spare hardware units. Modeling temperature at the microarchitecture level also shows that power metrics are poor predictors of temperature, and that sensor imprecision has a substantial impact on the performance of DTM.

Details

Database :
OpenAIRE
Journal :
Proceedings of the 30th annual international symposium on Computer architecture - ISCA '03
Accession number :
edsair.doi.dedup.....aac2c0a4543507a3358613546da54e1a
Full Text :
https://doi.org/10.1145/859618.859620