Back to Search Start Over

Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment

Authors :
Jean-Philippe Malet
Anne Puissant
Olivier Maquaire
Simone Sterlacchini
Yannick Thiery
Institut de physique du globe de Strasbourg (IPGS)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
Littoral, Environnement, Télédétection, Géomatique (LETG - Caen)
Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École pratique des hautes études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN)
Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN)
Université de Nantes (UN)-Université de Nantes (UN)
Image et ville (IV)
Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
ALARM (Assessment of Landslide Risk and Mitigation in Mountain Areas), contract EVG1-2001-00018, 2002–2004, Coordinator: S. Silvano (CNR-IRPI, Padova).
Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-Université de Nantes (UN)-École pratique des hautes études (EPHE)-Université de Brest (UBO)-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
Source :
Geomorphology, Geomorphology, Elsevier, 2007, 92 (1-2), pp.38-59. ⟨10.1016/j.geomorph.2007.02.020⟩, Geomorphology (Amst.) 92 (2007): 38–59. doi:10.1016/j.geomorph.2007.02.020, info:cnr-pdr/source/autori:Thiery Y., Malet J.-P., Sterlacchini S., Puissant A. & Maquaire O./titolo:Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment/doi:10.1016%2Fj.geomorph.2007.02.020/rivista:Geomorphology (Amst.)/anno:2007/pagina_da:38/pagina_a:59/intervallo_pagine:38–59/volume:92
Publication Year :
2007
Publisher :
HAL CCSD, 2007.

Abstract

International audience; Statistical assessment of landslide susceptibility has become a major topic of research in the last decade. Most progress has been accomplished on producing susceptibility maps at meso-scales (1:50,000–1:25,000). At 1:10,000 scale, which is the scale of production of most regulatory landslide hazard and risk maps in Europe, few tests on the performance of these methods have been performed. This paper presents a procedure to identify the best variables for landslide susceptibility assessment through a bivariate technique (weights of evidence, WOE) and discusses the best way to minimize conditional independence (CI) between the predictive variables. Indeed, violating CI can severely bias the simulated maps by over- or under-estimating landslide probabilities. The proposed strategy includes four steps: (i) identification of the best response variable (RV) to represent landslide events, (ii) identification of the best combination of predictive variables (PVs) and neo-predictive variables (nPVs) to increase the performance of the statistical model, (iii) evaluation of the performance of the simulations by appropriate tests, and (iv) evaluation of the statistical model by expert judgment. The study site is the north-facing hillslope of the Barcelonnette Basin (France), affected by several types of landslides and characterized by a complex morphology. Results indicate that bivariate methods are powerful to assess landslide susceptibility at 1:10,000 scale. However, the method is limited from a geomorphological viewpoint when RVs and PVs are complex or poorly informative. It is demonstrated that expert knowledge has still to be introduced in statistical models to produce reliable landslide susceptibility maps.

Details

Language :
English
ISSN :
0169555X
Database :
OpenAIRE
Journal :
Geomorphology, Geomorphology, Elsevier, 2007, 92 (1-2), pp.38-59. ⟨10.1016/j.geomorph.2007.02.020⟩, Geomorphology (Amst.) 92 (2007): 38–59. doi:10.1016/j.geomorph.2007.02.020, info:cnr-pdr/source/autori:Thiery Y., Malet J.-P., Sterlacchini S., Puissant A. & Maquaire O./titolo:Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment/doi:10.1016%2Fj.geomorph.2007.02.020/rivista:Geomorphology (Amst.)/anno:2007/pagina_da:38/pagina_a:59/intervallo_pagine:38–59/volume:92
Accession number :
edsair.doi.dedup.....aaa5af2351104bc5ccff71e56872e4a0
Full Text :
https://doi.org/10.1016/j.geomorph.2007.02.020⟩