Back to Search
Start Over
Large topological Hall effect in an easy-cone ferromagnet (Cr0.9B0.1)Te
- Source :
- Applied Physics Letters
- Publication Year :
- 2021
-
Abstract
- The Berry phase understanding of electronic properties has attracted special interest in condensed matter physics, leading to phenomena such as the anomalous Hall effect and the topological Hall effect. A non-vanishing Berry phase, induced in momentum space by the band structure or in real space by a non-coplanar spin structure, is the origin of both effects. Here, we report a sign conversion of the anomalous Hall effect and a large topological Hall effect in (Cr0.9B0.1)Te single crystals. The spin reorientation from an easy-axis structure at high temperature to an easy-cone structure below 140 K leads to conversion of the Berry curvature, which influences both, anomalous and topological, Hall effects in the presence of an applied magnetic field and current. We compare and summarize the topological Hall effect in four categories with different mechanisms and have a discussion into the possible artificial fake effect of topological Hall effect in polycrystalline samples, which provides a deep understanding of the relation between spin structure and Hall properties.<br />4 figures, 1 table
- Subjects :
- 010302 applied physics
Condensed Matter - Materials Science
Materials science
Physics and Astronomy (miscellaneous)
Materials Science (cond-mat.mtrl-sci)
FOS: Physical sciences
Position and momentum space
02 engineering and technology
Spin structure
021001 nanoscience & nanotechnology
Space (mathematics)
Topology
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
01 natural sciences
Magnetic field
Geometric phase
Hall effect
0103 physical sciences
Berry connection and curvature
0210 nano-technology
Spin-½
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Applied Physics Letters
- Accession number :
- edsair.doi.dedup.....aa90e9d42d2dc369c0276cb4acab7baf