Back to Search Start Over

Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations

Authors :
Leslie V. Woodcock
Source :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Entropy, Volume 21, Issue 12
Publication Year :
2019
Publisher :
MDPI, 2019.

Abstract

Following on from two previous JETC (Joint European Thermodynamics Conference) presentations, we present a preliminary report of further advances towards the thermodynamic description of critical behavior and a supercritical gas-liquid coexistence with a supercritical fluid mesophase defined by percolation loci. The experimental data along supercritical constant temperature isotherms (T &gt<br />Tc) are consistent with the existence of a two-state mesophase, with constant change in pressure with density, rigidity, (dp/d) T, and linear thermodynamic state-functions of density. The supercritical mesophase is bounded by 3rd-order phase transitions at percolation thresholds. Here we present the evidence that these percolation transitions of both gaseous and liquid states along any isotherm are preceded by pre-percolation hetero-phase fluctuations that can explain the thermodynamic properties in the mesophase and its vicinity. Hetero-phase fluctuations give rise to one-component colloidal-dispersion states<br />a single Gibbs phase retaining 2 degrees of freedom in which both gas and liquid states with different densities percolate the phase volume. In order to describe the thermodynamic properties of two-state critical and supercritical coexistence, we introduce the concept of a hypothetical homo-phase of both gas and liquid, defined as extrapolated equilibrium states in the pre-percolation vicinity, with the hetero-phase fractions subtracted. We observe that there can be no difference in chemical potential between homo-phase liquid and gaseous states along the critical isotherm in mid-critical isochoric experiments when the meniscus disappears at T = Tc. For T &gt<br />Tc, thermodynamic states comprise equal mole fractions of the homo-phase gas and liquid, both percolating the total phase volume, at the same temperature, pressure, and with a uniform chemical potential, stabilised by a positive finite interfacial surface tension.

Details

Language :
English
Database :
OpenAIRE
Journal :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Entropy, Volume 21, Issue 12
Accession number :
edsair.doi.dedup.....aa743e6ffab7b117fd75ef20c4a2baee