Back to Search
Start Over
A Weighted Setting for the Numerical Approximation of the Poisson Problem with Singular Sources
- Source :
- SIAM Journal on Numerical Analysis. 58:590-606
- Publication Year :
- 2020
- Publisher :
- Society for Industrial & Applied Mathematics (SIAM), 2020.
-
Abstract
- We consider the approximation of Poisson type problems where the source is given by a singular measure and the domain is a convex polygonal or polyhedral domain. First, we prove the well-posedness of the Poisson problem when the source belongs to the dual of a weighted Sobolev space where the weight belongs to the Muckenhoupt class. Second, we prove the stability in weighted norms for standard finite element approximations under the quasi-uniformity assumption on the family of meshes.<br />13 pages
- Subjects :
- Numerical Analysis
Applied Mathematics
65N30, 65N15, 35B45
Regular polygon
Singular measure
Numerical Analysis (math.NA)
010103 numerical & computational mathematics
Computer Science::Computational Geometry
Type (model theory)
Poisson distribution
01 natural sciences
Domain (mathematical analysis)
Finite element method
Computational Mathematics
symbols.namesake
Numerical approximation
FOS: Mathematics
symbols
Applied mathematics
Mathematics - Numerical Analysis
0101 mathematics
Poisson problem
Mathematics
Subjects
Details
- ISSN :
- 10957170 and 00361429
- Volume :
- 58
- Database :
- OpenAIRE
- Journal :
- SIAM Journal on Numerical Analysis
- Accession number :
- edsair.doi.dedup.....aa3701d0f2030a23af0215227a5f4b9e
- Full Text :
- https://doi.org/10.1137/18m1213105