Back to Search
Start Over
Author Correction: Precise control of SCRaMbLE in synthetic haploid and diploid yeast
- Source :
- Nature Communications, Vol 10, Iss 1, Pp 1-1 (2019), Nature Communications
- Publication Year :
- 2019
- Publisher :
- Nature Portfolio, 2019.
-
Abstract
- Compatibility between host cells and heterologous pathways is a challenge for constructing organisms with high productivity or gain of function. Designer yeast cells incorporating the Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system provide a platform for generating genotype diversity. Here we construct a genetic AND gate to enable precise control of the SCRaMbLE method to generate synthetic haploid and diploid yeast with desired phenotypes. The yield of carotenoids is increased to 1.5-fold by SCRaMbLEing haploid strains and we determine that the deletion of YEL013W is responsible for the increase. Based on the SCRaMbLEing in diploid strains, we develop a strategy called Multiplex SCRaMbLE Iterative Cycling (MuSIC) to increase the production of carotenoids up to 38.8-fold through 5 iterative cycles of SCRaMbLE. This strategy is potentially a powerful tool for increasing the production of bio-based chemicals and for mining deep knowledge.<br />The SCRaMbLE system integrated into Sc2.0’s synthetic yeast chromosome project allows rapid strain evolution. Here the authors use a genetic logic gate to control induction of recombination in a haploid and diploid yeast carrying synthetic chromosomes.
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 10
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Nature Communications
- Accession number :
- edsair.doi.dedup.....aa1a401e05ce7d8818463a0cd37df1ab