Back to Search
Start Over
Adult rat forelimb dysfunction after dorsal cervical spinal cord injury
- Source :
- Experimental neurology. 192(1)
- Publication Year :
- 2004
-
Abstract
- Repairing upper extremity function would significantly enhance the quality of life for persons with cervical spinal cord injury (SCI). Repair strategy development requires investigations of the deficits and the spontaneous recovery that occurs when cervical spinal cord axonal pathways are damaged. The present study revealed that both anatomically and electrophysiologically complete myelotomies of the C4 spinal cord dorsal columns significantly increased the adult rat's averaged times to first attend to adhesive stickers placed on the palms of their forepaws at 1 week. Complete bilateral myelotomies of the dorsal funiculi and dorsal hemisection, but not bilateral dorsolateral funiculi injuries, also similarly increased these times at 1 week. These data extend a previous finding by showing that a forepaw tactile sensory deficit that occurred in the adult rat after bilateral C4 spinal cord dorsal funiculi injury is due to damage of the dorsal columns. Averaged times to first attend to the stickers also decreased to those of sham-operated rats at 3 and 4 weeks post-dorsal hemisection with weekly testing. In contrast, a separate group of rats with dorsal hemisections had significantly increased times when tested only at 4 weeks. These data indicate that frequent assessment of this particular behavior in rats with dorsal hemisections extinguishes it and/or engenders a learned response in the absence of sensory axons in the dorsal columns and dorsolateral funiculi. This finding contrasted with weekly testing of grid walking where increased forelimb footfall numbers persisted for 4 weeks post-dorsal hemisection.
- Subjects :
- Male
Central nervous system
Neural Conduction
Extinction, Psychological
Rats, Sprague-Dawley
Developmental Neuroscience
Evoked Potentials, Somatosensory
Forelimb
medicine
Reaction Time
Animals
Attention
Axon
Spinal Cord Injuries
Afferent Pathways
business.industry
Learning Disabilities
Anatomy
Spinal cord
Rats
Disease Models, Animal
medicine.anatomical_structure
Neurology
Spinal Cord
Dorsal column nuclei
Somatosensory evoked potential
Touch
Corticospinal tract
Cervical Vertebrae
Somatosensory Disorders
business
Cervical vertebrae
Subjects
Details
- ISSN :
- 00144886
- Volume :
- 192
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Experimental neurology
- Accession number :
- edsair.doi.dedup.....a9faa092386ce274e63fadd4e0d125b1