Back to Search Start Over

Critical role of surface roughness on colloid retention and release in porous media

Authors :
Scott A. Bradford
Saeed Torkzaban
Source :
Water research. 88
Publication Year :
2015

Abstract

This paper examines the critical role of surface roughness (both nano- and micro-scale) on the processes of colloid retention and release in porous media under steady-state and transient chemical conditions. Nanoscale surface roughness (NSR) in the order of a few nanometers, which is common on natural solid surfaces, was incorporated into extended-DLVO calculations to quantify the magnitudes of interaction energy parameters (e.g. the energy barrier to attachment, ΔΦa , and detachment, ΔΦd , from a primary minimum). This information was subsequently used to explain the behavior of colloid retention and release in column and batch experiments under different ionic strength (IS) and pH conditions. Results demonstrated that the density and height of NSR significantly influenced the interaction energy parameters and consequently the extent and kinetics of colloid retention and release. In particular, values of ΔΦa and ΔΦd significantly decreased in the presence of NSR. Therefore, consistent with findings of column experiments, colloid retention in the primary minimum was predicted to occur at some specific locations on the sand surface, even at low IS conditions. However, NSR yielded a much weaker primary minimum interaction compared with that of smooth surfaces. Colloid release from primary minima upon decreasing IS and increasing pH was attributed to the impact of NSR on the values of ΔΦd . Pronounced differences in the amount of colloid retention in batch and column experiments indicated that primary minimum interactions were weak even at high IS conditions. Negligible colloid retention in batch experiments was attributed to hydrodynamic torques overcoming adhesive torques, whereas significant colloid retention in column experiments was attributed to nano- and micro-scale roughness which would dramatically alter the lever arms associated with hydrodynamic and adhesive torques.

Details

ISSN :
18792448
Volume :
88
Database :
OpenAIRE
Journal :
Water research
Accession number :
edsair.doi.dedup.....a9f8d64bfe3062758744d21f16fc336c