Back to Search Start Over

A statistical method for detecting logging-related canopy gaps using high-resolution optical remote sensing

Authors :
Sophie Pithon
Guillaume Jubelin
Stéphane Guitet
Valéry Gond
Office National des Forêts (ONF)
NEVANTROPIC
Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Biens et services des écosystèmes forestiers tropicaux : l'enjeu du changement global (Cirad-Es-UPR 105 BSEF)
Département Environnements et Sociétés (Cirad-ES)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud])
Biens et services des écosystèmes forestiers tropicaux : l'enjeu du changement global (UPR BSEF)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Source :
International Journal of Remote Sensing, International Journal of Remote Sensing, Taylor & Francis, 2013, 34 (2), pp.700-711. ⟨10.1080/01431161.2012.706719⟩
Publication Year :
2013

Abstract

In tropical rainforests, the sustainability of selective logging is closely linked to the extent of collateral stand damage. The capacity to measure the extent of such damage is essential for calculating carbon emissions due to forest degradation under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) process. The use of remote sensing to detect canopy gaps in tropical rainforests is an attractive alternative to ground surveys, which are laborious and imprecise. In French Guiana, the detection of logging-related gaps using very high spatial resolution optical satellite images produced by the Système Pour l'Observation de la Terre (SPOT) 5 sensor is carried out by Office National des Forêts (ONF) (French National Forestry Agency). Gaps are detected using a segmentation method based on computer-assisted photointerpretation. Detection has been automated to improve and accelerate the process. We developed an automatic method, which involves estimating segmentation thresholds using a statistical approach. The principle of the method presented in this article is to model the forest's spectral signature by using a Gaussian distribution and calculate a divergence between that theoretical signature and the image histogram in order to detect gaps that constitute a reduction of forest cover. The segmentation threshold between gap and forest is thus no longer defined in the original radiometric area but as a discrepancy between theoretical distribution and histogram. Computing the divergence to define the threshold made it possible to efficiently automate the detection of all gaps and skid trails with a surface area greater than 100 m2. The proportion of misclassified points measured during field surveys is 12%, which is a high level of precision. The proportion of misclassified points obtained is 12%. This tool could be used to assess the quality of logging operations or biomass loss in other areas where the forest is undergoing deterioration while still remaining predominant in the landscape.

Details

Language :
English
ISSN :
01431161 and 13665901
Database :
OpenAIRE
Journal :
International Journal of Remote Sensing, International Journal of Remote Sensing, Taylor & Francis, 2013, 34 (2), pp.700-711. ⟨10.1080/01431161.2012.706719⟩
Accession number :
edsair.doi.dedup.....a946bf6b8ff7839f7432af1277a4b948
Full Text :
https://doi.org/10.1080/01431161.2012.706719⟩