Back to Search
Start Over
Excited-state quantum phase transitions in systems with two degrees of freedom. III. Interacting boson systems
- Source :
- Physical Review C. 99
- Publication Year :
- 2019
- Publisher :
- American Physical Society (APS), 2019.
-
Abstract
- The series of articles [Ann. Phys. 345, 73 (2014) and 356, 57 (2015)] devoted to excited-state quantum phase transitions (ESQPTs) in systems with $f=2$ degrees of freedom is continued by studying the interacting boson model of nuclear collective dynamics as an example of a truly many-body system. The intrinsic Hamiltonian formalism with angular momentum fixed to $L=0$ is used to produce a generic first-order ground-state quantum phase transition with an adjustable energy barrier between the competing equilibrium configurations. The associated ESQPTs are shown to result from various classical stationary points of the model Hamiltonian, whose analysis is more complex than in previous cases because of (i) a non-trivial decomposition to kinetic and potential energy terms and (ii) the boundedness of the associated classical phase space. Finite-size effects resulting from a partial separability of both degrees of freedom are analyzed. The features studied here are inherent in a great majority of interacting boson systems.<br />14 pages, 6 figures
- Subjects :
- Quantum phase transition
Physics
Quantum Physics
Angular momentum
Nuclear Theory
010308 nuclear & particles physics
FOS: Physical sciences
01 natural sciences
Potential energy
Nuclear Theory (nucl-th)
symbols.namesake
Excited state
Phase space
Quantum mechanics
0103 physical sciences
symbols
Interacting boson model
Quantum Physics (quant-ph)
010306 general physics
Hamiltonian (quantum mechanics)
Boson
Subjects
Details
- ISSN :
- 24699993 and 24699985
- Volume :
- 99
- Database :
- OpenAIRE
- Journal :
- Physical Review C
- Accession number :
- edsair.doi.dedup.....a928b4bd3787c55b2be01f8420a2fcb7
- Full Text :
- https://doi.org/10.1103/physrevc.99.064323