Back to Search Start Over

Learning optical flow for fast MRI reconstruction

Authors :
Veronica Corona
Carola-Bibiane Schönlieb
Angelica I. Aviles-Rivero
Noémie Debroux
T. Schmoderer
Laboratoire de Mathématiques de l'INSA de Rouen Normandie (LMI)
Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)
Department of Pure Mathematics and Mathematical Statistics (DPMMS)
Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
Department of Applied Mathematics and Theoretical Physics (DAMTP), Centrefor Mathematical Sciences,University of Cambridge
Institut Pascal (IP)
Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
University of Cambridge [UK] (CAM)
Dynamical Interconnected Systems in COmplex Environments (DISCO)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des signaux et systèmes (L2S)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Laboratoire des signaux et systèmes (L2S)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Department of Applied Mathematics and Theoretical Physics (DAMTP)
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Source :
Inverse Problems, Inverse Problems, IOP Publishing, 2021, 37 (9), pp.095007. ⟨10.1088/1361-6420/ac164a⟩, Inverse Problems, 2021, 37 (9), pp.095007. ⟨10.1088/1361-6420/ac164a⟩, SIAM Conference on Imaging Science 2020, SIAM Conference on Imaging Science 2020, Jul 2020, Toronto (Online), Canada
Publication Year :
2021
Publisher :
IOP Publishing, 2021.

Abstract

International audience; Reconstructing high-quality magnetic resonance images (MRIs) from undersampled raw data is of great interest from both technical and clinical point of views. To this date, however, it is still a mathematically and computationally challenging problem due to its severe ill-posedness, resulting from the highly undersampled data. Whilst a number of techniques have been presented to improve image reconstruction, they only account for spatio-temporal regularisation, which shows its limitations in several relevant scenarios including dynamic data. In this work, we propose a new mathematical model for the reconstruction of high-quality medical MRI from few measurements. Our proposed approach combines—in a multi-task and hybrid model—the traditional compressed sensing formulation for the reconstruction of dynamic MRI with motion compensation by learning an optical flow approximation. More precisely, we propose to encode the dynamics in the form of an optical flow model that is sparsely represented over a learned dictionary. This has the advantage that ground truth data is not required in the training of the optical flow term. Furthermore, we present an efficient optimisation scheme to tackle the non-convex problem based on an alternating splitting method. We demonstrate the potentials of our approach through an extensive set of numerical results using different datasets and acceleration factors. Our combined approach reaches and outperforms several state-of-the-art techniques for multi-tasking reconstruction and other classic variational reconstruction schemes. Finally, we show the ability of our technique to transfer phantom based knowledge to real datasets.

Details

ISSN :
13616420 and 02665611
Volume :
37
Database :
OpenAIRE
Journal :
Inverse Problems
Accession number :
edsair.doi.dedup.....a91f12c9f4a7061ab12ff21c79b32285
Full Text :
https://doi.org/10.1088/1361-6420/ac164a