Back to Search Start Over

Water-Splitting Artificial Leaf Based on a Triple-Junction Silicon Solar Cell: One-Step Fabrication through Photoinduced Deposition of Catalysts and Electrochemical Operando Monitoring

Authors :
Duc N. Nguyen
Mariam Fadel
Pascale Chenevier
Vincent Artero
Phong D. Tran
Vietnam Academy of Science and Technology (VAST)
Solar fuels, hydrogen and catalysis (SolHyCat)
Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP )
SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES)
ANR-18-CE05-0017,BEEP,Ingéniérie d'électrodes à base de nanofils pour la photocatalyse(2018)
ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
Source :
Journal of the American Chemical Society, Journal of the American Chemical Society, 2022, 144 (22), pp.9651-9660. ⟨10.1021/jacs.2c00666⟩
Publication Year :
2022

Abstract

International audience; Solar hydrogen generation via water splitting using a monolithic photoelectrochemical cell, also called artificial leaf, could be a powerful technology to accelerate the transition from fossil to sustainable energy sources. Identification of scalable methods for the fabrication of monolithic devices and gaining insights into their operating mode to identify solutions to improve performance and stability represent great challenges. Herein, we report on the one-step fabrication of a CoWO|ITO|3jn-a-Si|Steel| CoWS monolithic device via the simple photoinduced deposition of CoWO and CoWS as oxygen evolution reaction (OER) and onto an illuminated ITO|3jn-a-Si|Steel solar cell using a singledeposition bath containing the [Co(WS4)2]2- complex. In a pH 7 phosphate buffer solution, the best device achieved a solar-to-hydrogen conversion yield of 1.9%. Evolution of the catalyst layers and that of the 3jn-a-Si light-harvesting core during the operation of the monolithic device are examined by conventional tools such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma optical emission spectroscopy (ICP-OES) together with a bipotentiostat measurement. We demonstrate that the device performance degrades due to the partial dissolution of the catalyst. Still, this degradation is healable by simply adding [Co(WS4)2]2- to the operating solution. However, modifications on the protecting indium-doped tin oxide (ITO) layer are shown to initiate irreversible degradation of the 3jn-a-Si light-harvesting core, resulting in a 10-fold decrease of the performances of the monolithic device.

Details

ISSN :
15205126 and 00027863
Volume :
144
Issue :
22
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....a8cb4b37884a91ba27bb6481a22d090c