Back to Search
Start Over
Identification of genetic elements in metabolism by high-throughput mouse phenotyping
- Source :
- Nature Communications, Nature Communications, Vol 9, Iss 1, Pp 1-16 (2018), Nature communications, vol 9, iss 1, Rozman, J, Rathkolb, B, Oestereicher, M A, Schütt, C, Ravindranath, A C, Leuchtenberger, S, Sharma, S, Kistler, M, Willershäuser, M, Brommage, R, Meehan, T F, Mason, J, Haselimashhadi, H, Aguilar-Pimentel, A, Becker, L, Treise, I, Moreth, K, Garrett, L, Hölter, S M, Zimprich, A, Marschall, S, Amarie, O V, Calzada-Wack, J, Neff, F, Brachthäuser, L, Lengger, C, Stoeger, C, Zapf, L, Cho, Y L, Da Silva-Buttkus, P, Kraiger, M J, Mayer-Kuckuk, P, Gampe, K K, Wu, M, Conte, N, Warren, J, Chen, C K, Tudose, I, Relac, M, Matthews, P, Cater, H L, Natukunda, H P, Cleak, J, Teboul, L M, Clementson-Mobbs, S, Szoke-Kovacs, Z, Walling, A P, Johnson, S J, Codner, G F, Fiegel, T, Ring, N, Westerberg, H, Greenaway, S, Sneddon, D, Morgan, H, Loeffler, J, Stewart, M E, Ramirez-Solis, R, Bradley, A, Skarnes, W C, Steel, K P, Maguire, S A, Dench, J, Lafont, D, Vancollie, V E, Pearson, S A, Gates, A S, Sanderson, M, Shannon, C, Anthony, L F E, Sumowski, M T, McLaren, R S B, Doe, B, Wardle-Jones, H, Griffiths, M N D, Galli, A, Swiatkowska, A, Isherwood, C M, Speak, A O, Cambridge, E L, Wilson, H M, Caetano, S S, Maguire, A K B, Adams, D J, Bottomley, J, Ryder, E, Gleeson, D, Pouilly, L, Rousseau, S, Auburtin, A, Reilly, P, Ayadi, A, Selloum, M, Wood, J A, Clary, D, Havel, P, Tolentino, T, Tolentino, H, Schuchbauer, M, Pedroia, S, Trainor, A, Djan, E, Pham, M, Huynh, A, De Vera, V, Seavitt, J, Gallegos, J, Garza, A, Mangin, E, Senderstrom, J, Lazo, I, Mowrey, K, Bohat, R, Samaco, R, Veeraragavan, S, Beeton, C, Kalaga, S, Kelsey, L, Vukobradovic, I, Berberovic, Z, Owen, C, Qu, D, Guo, R, Newbigging, S, Morikawa, L, Law, N, Shang, X, Feugas, P, Wang, Y, Eskandarian, M, Zhu, Y, Penton, P, Laurin, V, Clarke, S, Lan, Q, Sleep, G, Creighton, A, Jacob, E, Danisment, O, Gertsenstein, M, Pereira, M, MacMaster, S, Tondat, S, Carroll, T, Cabezas, J, Hunter, J, Clark, G, Bubshait, M, Miller, D, Sohel, K, Adissu, H, Ganguly, M, Bezginov, A, Chiani, F, Di Pietro, C, Di Segni, G, Ermakova, O, Ferrara, F, Fruscoloni, P, Gambadoro, A, Gastaldi, S, Golini, E, La Sala, G, Mandillo, S, Marazziti, D, Massimi, M, Matteoni, R, Orsini, T, Pasquini, M, Raspa, M, Rauch, A, Rossi, G, Rossi, N, Putti, S, Scavizzi, F, Tocchini-Valentini, G D, Wakana, S, Suzuki, T, Tamura, M, Kaneda, H, Furuse, T, Kobayashi, K, Miura, I, Yamada, I, Obata, Y, Yoshiki, A, Ayabe, S, Chambers, J N, Chalupsky, K, Seisenberger, C, Bürger, A, Beig, J, Kühn, R, Hörlein, A, Schick, J, Oritz, O, Giesert, F, Graw, J, Ollert, M, Schmidt-Weber, C, Stoeger, T, Önder Yildirim, A, Eickelberg, O, Klopstock, T, Busch, D H, Bekeredjian, R, Zimmer, A, Jacobsen, J O, Smedley, D, Dickinson, M E, Benso, F, Morse, I, Kim, H C, Lee, H, Cho, S Y, Hough, T, Mallon, A M, Wells, S, Santos, L, Lelliott, C J, White, J K, Sorg, T, Champy, M F, Bower, L R, Reynolds, C L, Flenniken, A M, Murray, S A, Nutter, L M J, Svenson, K L, West, D, Tocchini-Valentini, G P, Beaudet, A L, Bosch, F, Braun, R B, Dobbie, M S, Gao, X, Herault, Y, Moshiri, A, Moore, B A, Kent Lloyd, K C, McKerlie, C, Masuya, H, Tanaka, N, Flicek, P, Parkinson, H E, Sedlacek, R, Seong, J K, Wang, C K L, Moore, M, Brown, S D, Tschöp, M H, Wurst, W, Klingenspor, M, Wolf, E, Beckers, J, MacHicao, F, Peter, A, Staiger, H, Häring, H U, Grallert, H, Campillos, M, Maier, H, Fuchs, H, Gailus-Durner, V, Werner, T & De Angelis, M H 2018, ' Identification of genetic elements in metabolism by high-throughput mouse phenotyping ', Nature Communications, vol. 9, 288 . https://doi.org/10.1038/s41467-017-01995-2, Nature Communications 9(1), 288 (2018). doi:10.1038/s41467-017-01995-2, Nat. Commun. 9:288 (2018)
- Publication Year :
- 2018
- Publisher :
- Nature Publishing Group UK, 2018.
-
Abstract
- Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.<br />The genetic basis of metabolic diseases is incompletely understood. Here, by high-throughput phenotyping of 2,016 knockout mouse strains, Rozman and colleagues identify candidate metabolic genes, many of which are associated with unexplored regulatory gene networks and metabolic traits in human GWAS.
- Subjects :
- 0301 basic medicine
Blood Glucose
Candidate gene
Cancer Research
Basal Metabolism/genetics
Gene regulatory network
Obesity/genetics
genetics [Metabolic Diseases]
General Physics and Astronomy
Genome-wide association study
Genome
Mice
genetics [Obesity]
Triglycerides/metabolism
2.1 Biological and endogenous factors
Gene Regulatory Networks
Aetiology
lcsh:Science
metabolism [Blood Glucose]
Mice, Knockout
Multidisciplinary
genetics [Basal Metabolism]
Phenotype
Area Under Curve
Diabetes Mellitus, Type 2/genetics
ddc:500
Technology Platforms
Type 2
metabolism [Triglycerides]
Knockout
Science
Computational biology
Biology
genetics [Diabetes Mellitus, Type 2]
General Biochemistry, Genetics and Molecular Biology
Article
03 medical and health sciences
Oxygen Consumption
Metabolic Diseases
Body Weight/genetics
Diabetes Mellitus
Genetics
Animals
Humans
Metabolic Diseases/genetics
Obesity
Gene
Gene knockout
Triglycerides
Oxygen Consumption/genetics
Blood Glucose/metabolism
genetics [Body Weight]
Human Genome
Body Weight
Promoter
General Chemistry
genetics [Oxygen Consumption]
High-Throughput Screening Assays
030104 developmental biology
Diabetes Mellitus, Type 2
IMPC Consortium
lcsh:Q
Basal Metabolism
Genome-Wide Association Study
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Nature Communications
- Accession number :
- edsair.doi.dedup.....a8b0e532914292040e57c2e66d31b14e