Back to Search Start Over

The miR-181a-SFRP4 Axis Regulates Wnt Activation to Drive Stemness and Platinum Resistance in Ovarian Cancer

Authors :
Arshia Surti
Analisa DiFeo
Elmar Nurmemmedov
Anil Belur Nagaraj
Michael Kahn
Alexis Fleming
Luca Beltrame
Sergio Marchini
R. Shae Connor
Peronne Joseph
Sreeja C. Sekhar
Olga Kovalenko
Matthew Knarr
Source :
Cancer Res
Publication Year :
2020

Abstract

Wnt signaling is a major driver of stemness and chemoresistance in ovarian cancer, yet the genetic drivers that stimulate its expression remain largely unknown. Unlike other cancers, mutations in the Wnt pathway are not reported in high-grade serous ovarian cancer (HGSOC). Hence, a key challenge that must be addressed to develop effective targeted therapies is to identify nonmutational drivers of Wnt activation. Using an miRNA sensor-based approach, we have identified miR-181a as a novel driver of Wnt/β-catenin signaling. miR-181ahigh primary HGSOC cells exhibited increased Wnt/β-catenin signaling, which was associated with increased stem-cell frequency and platinum resistance. Consistent with these findings, inhibition of β-catenin decreased stem-like properties in miR-181ahigh cell populations and downregulated miR-181a. The Wnt inhibitor SFRP4 was identified as a novel target of miR-181a. Overall, our results demonstrate that miR-181a is a nonmutational activator of Wnt signaling that drives stemness and chemoresistance in HGSOC, suggesting that the miR–181a–SFRP4 axis can be evaluated as a novel biomarker for β-catenin–targeted therapy in this disease. Significance: These results demonstrate that miR-181a is an activator of Wnt signaling that drives stemness and chemoresistance in HGSOC and may be targeted therapeutically in recurrent disease.

Details

ISSN :
15387445
Volume :
81
Issue :
8
Database :
OpenAIRE
Journal :
Cancer research
Accession number :
edsair.doi.dedup.....a8956d92e8fd8970310a5b725237f764