Back to Search Start Over

The classical and quantum dynamics of molecular spins on graphene

Authors :
Fernando Luis
Ana Repollés
Marko Burghard
Andrea Cornia
Maria Gloria Pini
Angelo Rettori
Stephan Rauschenbach
Lapo Bogani
Christian Cervetti
Martin Dressel
Klaus Kern
Ministero dell'Istruzione, dell'Università e della Ricerca
Ministerio de Economía y Competitividad (España)
European Research Council
Royal Society (UK)
Source :
Nature Materials (Online) (2015). doi:10.1038/nmat4490, info:cnr-pdr/source/autori:Christian Cervetti; Angelo Rettori; Maria Gloria Pini; Andrea Cornia; Ana Repollés; Fernando Luis; Martin Dressel; Stephan Rauschenbach; Klaus Kern; Marko Burghard; Lapo Bogani/titolo:The classical and quantum dynamics of molecular spins on graphene/doi:10.1038%2Fnmat4490/rivista:Nature Materials (Online)/anno:2015/pagina_da:/pagina_a:/intervallo_pagine:/volume, Nature materials, Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2016
Publisher :
Nature Publishing Group, 2016.

Abstract

PMCID: PMC4800001.-- et al.<br />Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.<br />Financial support from Italian MIUR, Spanish MINECO (MAT2012-38318-C03-01), BW-Stiftung (Kompetenznetz Funktionelle Nanostrukturen), ERC StG-338258 “OptoQMol”, the Royal Society (URF fellowship and grant) and the AvH Stiftung (Sofja Kovalevskaja award).

Details

ISSN :
14764660 and 14761122
Database :
OpenAIRE
Journal :
Nature Materials
Accession number :
edsair.doi.dedup.....a87e36dbbebc43127c7b271c228ff60c
Full Text :
https://doi.org/10.1038/nmat4490