Back to Search Start Over

Near-Optimal Decentralized Diagnosis via Structural Analysis

Authors :
Gustavo Perez-Zuniga
Elodie Chanthery
Louise Trave-Massuyes
Javier Sotomayor
Pontificia Universidad Católica del Perú = Pontifical Catholic University of Peru (PUCP)
Équipe DIagnostic, Supervision et COnduite (LAAS-DISCO)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
Source :
IEEE Transactions on Systems, Man, and Cybernetics: Systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (12), pp.7353-7365. ⟨10.1109/TSMC.2022.3156539⟩
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; Health monitoring of current complex systems significantly impacts the total cost of the system. Centralized fault diagnosis architectures are sometimes prohibitive for large-scale interconnected systems, such as distribution systems, telecommunication networks, water distribution networks, or fluid power systems. Confidentiality constraints are also an issue. This article presents a decentralized fault diagnosis method that only requires the knowledge of local models and limited knowledge of their neighboring subsystems. The method, implemented in the decentralized diagnoser design (D³) algorithm, is based on structural analysis and can advantageously be applied to high-dimensional systems, linear or nonlinear. Using the concept of isolation on request, a hierarchy is built according to diagnostic objectives. The resulting diagnoser is based on analytical redundancy relations (ARRs) generated along the hierarchy. Their number is optimized via binary integer linear programming (BILP) while still guaranteeing maximal diagnosability at each level. D³ proves of lower time complexity than its centralized equivalent. It is successfully applied to a nonlinear combined cycle gas-turbine power plant.

Details

ISSN :
21682232 and 21682216
Volume :
52
Database :
OpenAIRE
Journal :
IEEE Transactions on Systems, Man, and Cybernetics: Systems
Accession number :
edsair.doi.dedup.....a87b9c3588d152038f4b85c61150abca