Back to Search Start Over

Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT

Authors :
Giannone, L.
Cerna, M.
Cole, R.
Fitzek, M.
Kallenbach, A.
Lüddecke, K.
McCarthy, P. J.
Scarabosio, A.
Schneider, W.
Sips, A. C. C.
Treutterer, W.
Vrancic, A.
Wenzel, L.
Yi, H.
Behler, K.
Eich, T.
Eixenberger, H.
Fuchs, J. C.
Haas, G.
Lexa, G.
Marquardt, M.
Mlynek, A.
Neu, G.
Raupp, G.
Reich, M.
Sachtleben, J.
Schuhbeck, K. H.
Zehetbauer, T.
Concezzi, S.
Debelle, T.
Marker, B.
Munroe, M.
Petersen, N.
Schmidt, D.
ASDEX Upgrade Team
ASDEX Upgrade Team
Source :
Fusion Engineering and Design, v.85, 301-307 (2010), Fusion Engineering and Design
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

The existing VxWorks real-time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real-time using a multi-core PCI Express system running LabVIEW RT 8.6. real-time signal processing of bolometers and manometers is performed with the on-board FPGA to calculate the measured radiated power flux and particle flux respectively from the raw data. Radiation feedback experiments use halo current measurements from the outer divertor with real-time median filter pre-processing to remove the excursions produced by ELMs. Integration of these plasma diagnostics into the control system by the exchange of XML sheets for communicating the real-time variables to be produced and consumed is in operation. Reflective memory and UDP are employed by the LabVIEW RT plasma diagnostics to communicate with the control system and other plasma diagnostics in a multi-platform real-time network.

Details

ISSN :
09203796
Volume :
85
Database :
OpenAIRE
Journal :
Fusion Engineering and Design
Accession number :
edsair.doi.dedup.....a83988a3006f3b8a0cef1df9e27f5bfd