Back to Search
Start Over
Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion
- Source :
- Digital.CSIC: Repositorio Institucional del CSIC, Consejo Superior de Investigaciones Científicas (CSIC), Academica-e. Repositorio Institucional de la Universidad Pública de Navarra, instname, Academica-e: Repositorio Institucional de la Universidad Pública de Navarra, Universidad Pública de Navarra
- Publication Year :
- 2009
- Publisher :
- National Academy of Sciences (U.S.), 2009.
-
Abstract
- Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β -1–4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost. This work was supported by the U.S. Department of Energy’s Office of Science, Biological and Environmental Research Program, and University of California, Lawrence Berkeley National Laboratory Contract DE-AC02–05CH11231; Lawrence Livermore National Laboratory Contract DE-AC52–07NA27344; Los Alamos National Laboratory Contract DE-AC02–06NA25396; University of Wisconsin Grant DE-FG02–87ER13712; Forest Products Laboratory, U.S. Department of Agriculture, Cooperative State Research, Education, and Extension Services Grant 2007–35504-18257; National Institutes of Health Grant GM060201 (to University of New Mexico); Centro de Investigaciones Biológicas (Madrid) EUproject NMP2–2006-026456; Ministry of Education Czech Republic Grant LC06066.
- Subjects :
- Fenton
Glycoside Hydrolases
Molecular Sequence Data
Cellulase
Genome
Lignin
Transcriptome
Postia placenta
03 medical and health sciences
chemistry.chemical_compound
Cellulases
Glycoside hydrolase
Cellulose
030304 developmental biology
2. Zero hunger
0303 health sciences
Multidisciplinary
Base Sequence
biology
030306 microbiology
Gene Expression Profiling
Biological Sciences
15. Life on land
biology.organism_classification
Biological Evolution
Wood
Enzymes
Wood-decay fungus
Brown-Rot
chemistry
Biochemistry
biology.protein
Phanerochaete
Genome, Fungal
Oxidoreductases
Polyporales
Metabolic Networks and Pathways
Subjects
Details
- ISSN :
- 55041825
- Database :
- OpenAIRE
- Journal :
- Digital.CSIC: Repositorio Institucional del CSIC, Consejo Superior de Investigaciones Científicas (CSIC), Academica-e. Repositorio Institucional de la Universidad Pública de Navarra, instname, Academica-e: Repositorio Institucional de la Universidad Pública de Navarra, Universidad Pública de Navarra
- Accession number :
- edsair.doi.dedup.....a81f982d5a3718d0017f382f035e5681
- Full Text :
- https://doi.org/10.1073/pnas.0809575106