Back to Search Start Over

Deep learning for detecting freezing of gait episodes in Parkinson’s disease based on accelerometers

Authors :
Julià Camps
Berta Mestre
Joan Cabestany
Albert Samà
Sheila Alcaine
Àngels Bayés
Daniel Rodríguez-Martín
Mario Martín
M. Cruz Crespo
Carlos Pérez-López
Andreu Català
Anna Prats
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. CETpD -Centre d'Estudis Tecnològics per a l'Atenció a la Dependència i la Vida Autònoma
Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Advances in Computational Intelligence ISBN: 9783319591469, IWANN (2)

Abstract

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-59147-6_30 Freezing of gait (FOG) is one of the most incapacitating symptoms among the motor alterations of Parkinson’s disease (PD). Manifesting FOG episodes reduce patients’ quality of life and their autonomy to perform daily living activities, while it may provoke falls. Accurate ambulatory FOG assessment would enable non-pharmacologic support based on cues and would provide relevant information to neurologists on the disease evolution. This paper presents a method for FOG detection based on deep learning and signal processing techniques. This is, to the best of our knowledge, the first time that FOG detection is addressed with deep learning. The evaluation of the model has been done based on the data from 15 PD patients who manifested FOG. An inertial measurement unit placed at the left side of the waist recorded tri-axial accelerometer, gyroscope and magnetometer signals. Our approach achieved comparable results to the state-of-the-art, reaching validation performances of 88.6% and 78% for sensitivity and specificity respectively.

Details

ISBN :
978-3-319-59146-9
ISBNs :
9783319591469
Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Advances in Computational Intelligence ISBN: 9783319591469, IWANN (2)
Accession number :
edsair.doi.dedup.....a7f4671034e3b5e01822a3544738dca0