Back to Search Start Over

Systems medicine of inflammaging

Authors :
Luciano Milanesi
Sebastiano Collino
Claudia Sala
Giulia Menichetti
Paolo Garagnani
Matteo Bersanelli
Maria Giulia Bacalini
Enrico Giampieri
Italo Faria do Valle
Silvia Vitali
Chiara Pirazzini
Daniel Remondini
Pietro Liò
Gastone Castellani
Ettore Mosca
Claudio Franceschi
Castellani, Gastone C.
Menichetti, Giulia
Garagnani, Paolo
Bacalini, Maria Giulia
Pirazzini, Chiara
Franceschi, Claudio
Collino, Sebastiano
Sala, Claudia
Remondini, Daniel
Giampieri, Enrico
Mosca, Ettore
Bersanelli, Matteo
Vitali, Silvia
Do Valle, Italo Faria
Liò, Pietro
Milanesi, Luciano
Source :
Briefings in bioinformatics 17 (2016): 527–540. doi:10.1093/bib/bbv062, info:cnr-pdr/source/autori:Castellani G.C.; Menichetti G.; Garagnani P.; Bacalini M.G.; Pirazzini C.; Franceschi C.; Collino S.; Sala C.; Remondini D.; Giampieri E.; Mosca E.; Bersanelli M.; Vitali S.; Do Valle I.F.; Lio P.; Milanesi L./titolo:Systems medicine of inflammaging/doi:10.1093%2Fbib%2Fbbv062/rivista:Briefings in bioinformatics/anno:2016/pagina_da:527/pagina_a:540/intervallo_pagine:527–540/volume:17, Briefings in Bioinformatics
Publication Year :
2016

Abstract

Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored computational, statistical and modeling tools. The three SM pillars are highly interconnected, and their balancing is crucial. Despite the great technological progresses producing huge amount of data (Big Data) and impressive computational facilities, the Bio-Medical hypotheses are still of primary importance. A paradigmatic example of unifying Bio-Medical theory is the concept of Inflammaging. This complex phenotype is involved in a large number of pathologies and patho-physiological processes such as aging, age-related diseases and cancer, all sharing a common inflammatory pathogenesis. This Biomedical hypothesis can be mapped into an ecological perspective capable to describe by quantitative and predictive models some experimentally observed features, such as microenvironment, niche partitioning and phenotype propagation. In this article we show how this idea can be supported by computational methods useful to successfully integrate, analyze and model large data sets, combining cross-sectional and longitudinal information on clinical, environmental and omics data of healthy subjects and patients to provide new multidimensional biomarkers capable of distinguishing between different pathological conditions, e.g. healthy versus unhealthy state, physiological versus pathological aging.

Details

Language :
English
Database :
OpenAIRE
Journal :
Briefings in bioinformatics 17 (2016): 527–540. doi:10.1093/bib/bbv062, info:cnr-pdr/source/autori:Castellani G.C.; Menichetti G.; Garagnani P.; Bacalini M.G.; Pirazzini C.; Franceschi C.; Collino S.; Sala C.; Remondini D.; Giampieri E.; Mosca E.; Bersanelli M.; Vitali S.; Do Valle I.F.; Lio P.; Milanesi L./titolo:Systems medicine of inflammaging/doi:10.1093%2Fbib%2Fbbv062/rivista:Briefings in bioinformatics/anno:2016/pagina_da:527/pagina_a:540/intervallo_pagine:527–540/volume:17, Briefings in Bioinformatics
Accession number :
edsair.doi.dedup.....a7e43b994af0eff8e50fb470ed2e34cd
Full Text :
https://doi.org/10.1093/bib/bbv062