Back to Search Start Over

Commensurability and chaos in magnetic vortex oscillations

Authors :
Arne Vansteenkiste
Karim Bouzehouane
Ben Van de Wiele
Vincent Cros
Joo-Von Kim
Ruben Otxoa
Thibaut Devolder
Antonio Ruotolo
Julie Grollier
Sébastien Petit-Watelot
Institut d'électronique fondamentale (IEF)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES)
THALES [France]-Centre National de la Recherche Scientifique (CNRS)
City University of Hong Kong [Hong Kong] (CUHK)
Department of Solid State Sciences
Universiteit Gent = Ghent University (UGENT)
Department of Electrical Energy, Systems and Automation
ANR-09-NANO-0006,VOICE,Dynamique de vortex magnétiques isolés ou en interaction induite par transfert de spin.(2009)
European Project: 215368,EC:FP7:PEOPLE,FP7-PEOPLE-2007-1-1-ITN,SEMISPINNET(2008)
European Project: 36241,SPINSWITCH
Centre National de la Recherche Scientifique (CNRS)-THALES
Universiteit Gent = Ghent University [Belgium] (UGENT)
Source :
Nature Physics, Nature Physics, 2012, 8 (9), pp.682-687. ⟨10.1038/NPHYS2362⟩, Nature Physics, Nature Publishing Group, 2012, 8 (9), pp.682-687. ⟨10.1038/NPHYS2362⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; Magnetic vortex dynamics in thin films is characterized by gyrotropic motion, the sense of gyration depending on the vortex core polarity, which reverses when a critical velocity is reached. Although self-sustained vortex oscillations in nanoscale systems are known to be possible, the precise role of core reversal in such dynamics remains unknown. Here we report on an experimental observation of periodic core reversal during self-sustained vortex gyration in a magnetic nanocontact system. By tuning the ratio between the gyration frequency and the rate of core reversal, we show that commensurate phase-locked and incommensurate chaotic states are possible, resulting in Devil’s staircases with driving currents. These systems could have the potential to serve as tunable nanoscale radiofrequency electrical oscillators for secure communications, allowing schemes such as encryption by chaos on demand.

Details

Language :
English
ISSN :
17452473 and 14764636
Database :
OpenAIRE
Journal :
Nature Physics, Nature Physics, 2012, 8 (9), pp.682-687. ⟨10.1038/NPHYS2362⟩, Nature Physics, Nature Publishing Group, 2012, 8 (9), pp.682-687. ⟨10.1038/NPHYS2362⟩
Accession number :
edsair.doi.dedup.....a7d7118fcce52309208c17e79d039df6
Full Text :
https://doi.org/10.1038/NPHYS2362⟩