Back to Search Start Over

Osteoporosis assessment using Multilayer Perceptron neural networks

Authors :
Khaled Harrar
Eric Lespessailles
Rachid Jennane
Latifa Hamami
Sonia Akkoul
Laboratoire Signal et Communications (LSC)
Ecole Nationale Polytechnique [Alger] (ENP)
Département Images, Robotique, Automatique et Signal [Orléans] (IRAUS)
Laboratoire pluridisciplinaire de recherche en ingénierie des systèmes, mécanique et énergétique (PRISME)
Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux et articulaire (I3MTO)
Université d'Orléans (UO)
Jennane, Rachid
Source :
IPTA, IEEE-IPTA Proceedings, IEEE-IPTA, IEEE-IPTA, Oct 2012, Istanbul, Turkey. pp.217-221
Publication Year :
2012
Publisher :
IEEE, 2012.

Abstract

International audience; The objective of this paper is to investigate the effectiveness of a Multilayer Perceptron (MLP) to discriminate subjects with and without osteoporosis using a set of five parameters characterizing the quality of the bone structure. These parameters include Age, Bone mineral content (BMC), Bone mineral density (BMD), fractal Hurst exponent (Hmean) and coocurrence texture feature (CoEn). The purpose of the study is to detect the potential usefulness of the combination of different features to increase the classification rate of 2 populations composed of osteporotic patients and control subjects. k-fold Cross Validation (CV) was used in order to assess the accuracy and reliability of the neural network validation. Compared to other methods MLP-based analysis provides an accurate and reliable platform for osteoporosis prediction. Moreover, the results show that the combination of the five features provides better performance in terms of discrimination of the subjects.

Details

Database :
OpenAIRE
Journal :
2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)
Accession number :
edsair.doi.dedup.....a7b25d13527be49b0e50f38f7cebcffe