Back to Search Start Over

Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor

Authors :
Mathieu Spérandio
Mark C.M. van Loosdrecht
Eveline Volcke
K. E. Mampaey
Universiteit Gent = Ghent University [Belgium] (UGENT)
Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA)
Delft University of Technology (TU Delft)
Ghent University [Belgium] (UGENT)
Symbiose : Ecosystèmes microbiens et bioprocédés d’épuration et de valorisation (TBI-SYMBIOSE)
Toulouse Biotechnology Institute (TBI)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Department of Biotechnology
Department of Biosystems Engineering [Ghent]
Universiteit Gent = Ghent University (UGENT)
Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Biochemical Engineering Journal, Biochemical Engineering Journal, Elsevier, 2019, 152, pp.107356. ⟨10.1016/j.bej.2019.107356⟩, Biochemical Engineering Journal, 2019, 152, pp.107356. ⟨10.1016/j.bej.2019.107356⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; This study deals with the potential and the limitations of dynamic models for describing and predicting nitrous oxide (N2O) emissions associated with biological nitrogen removal from wastewater. The results of a three-week monitoring campaign on a full-scale partial nitritation reactor were reproduced through a state-of-the-art model including different biological N2O formation pathways. The partial nitritation reactor under study was a SHARON reactor treating the effluent from a municipal wastewater treatment plant sludge digester. A qualitative and quantitative comparison between experimental data and simulation results was performed to identify N2O formation pathways as well as for model identification. Heterotrophic denitrifying bacteria and ammonium oxidizing bacteria (AOB) were responsible for N2O formation under anoxic conditions, whereas under aerated conditions the AOB were the most important N2O producers. Relative to previously proposed models, hydroxylamine (NH2OH) had to be included as a state variable in the AOB conversions in order to describe potential N2O formation by AOB under anoxic conditions. An oxygen inhibition term in the corresponding reaction kinetics was required to fairly represent the relative contribution of the different AOB pathways for N2O production. Nevertheless, quantitative prediction of N2O emissions with models remains a challenge, which is discussed.

Details

Language :
English
ISSN :
1369703X
Database :
OpenAIRE
Journal :
Biochemical Engineering Journal, Biochemical Engineering Journal, Elsevier, 2019, 152, pp.107356. ⟨10.1016/j.bej.2019.107356⟩, Biochemical Engineering Journal, 2019, 152, pp.107356. ⟨10.1016/j.bej.2019.107356⟩
Accession number :
edsair.doi.dedup.....a7aafc8aac5db789ac0b847c57f6e38a
Full Text :
https://doi.org/10.1016/j.bej.2019.107356⟩