Back to Search Start Over

Quantifying the PR interval pattern during dynamic exercise and recovery

Authors :
Olivier Meste
S. Bermon
Aline Cabasson
Gregory M. Blain
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL
Signal, Images et Systèmes (Laboratoire I3S - SIS)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
IM2S
Principauté de Monaco
Source :
IEEE Transactions on Biomedical Engineering, IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2009, 56 (11), pp.2675-83. ⟨10.1109/TBME.2009.2028694⟩
Publication Year :
2009

Abstract

International audience; We present a novel analysis tool for time delay estimation in electrocardiographic signal processing. This tool enhances PR interval estimation (index of the atrioventricular conduction time) by limiting the distortion effect of the T wave overlapping the P wave at high heart rates. Our approach consists of modeling the T wave, cancelling its influence, and finally estimating the PR intervals during exercise and recovery with the proposed generalized Woody method. Different models of the T wave are presented and compared in a statistical summary that quantitatively justifies the improvements introduced by this study. Among the different models tested, we found that a piecewise linear function significantly reduces the T wave-induced bias in the estimation process. Combining this modeling with the proposed time delay estimation method leads to accurate PR interval estimation. Using this method on real ECGs recorded during exercise and its recovery, we found: 1) that the slopes of PR interval series in the early recovery phase are dependent on the subjects' training status (average of the slopes for sedentary men = 0.11 ms/s, and for athlete men = 0.28 ms/s), and 2) an hysteresis phenomenon exists in the relation PR/RR intervals when data from exercise and recovery are compared.

Details

ISSN :
15582531 and 00189294
Volume :
56
Issue :
11
Database :
OpenAIRE
Journal :
IEEE transactions on bio-medical engineering
Accession number :
edsair.doi.dedup.....a78f9abd1924bfc861f10f86910f092d
Full Text :
https://doi.org/10.1109/TBME.2009.2028694⟩