Back to Search
Start Over
Assessment of Leishmanicidal and Trypanocidal Activities of Aliphatic Diamine Derivatives
- Source :
- Chemical Biology & Drug Design. 82:697-704
- Publication Year :
- 2013
- Publisher :
- Wiley, 2013.
-
Abstract
- Leishmanicidal and trypanocidal activity of seventeen lipophilic diamines was evaluated in vitro against Leishmania braziliensis, L. chagasi, and Trypanosoma cruzi. Twelve compounds presented anti-Leishmania and six showed anti-T. cruzi amastigote activity. Compound 14 (N-tetradecyl-1,4-butanediamine) was the most active against both L. braziliensis (IC50 = 2.6 μm) and L. chagasi (IC50 = 3.0 μm) which showed a selectivity index (SI) >100. N-decyl-1,6-hexanediamine (compound 9) presented an IC50 = 1.6 μm and SI >187 and was over six times more potent than the reference drug benznidazole against T. cruzi. Treatment of infected or uninfected macrophages with compounds 9 and 14 did not induce significant TNFα and NO production. Four compounds (15, 16, 22, and 23) inhibited 78.9%, 77.7%, 83.7%, and 70.1% of rTRLb activity, respectively, and compound 23 inhibited 73.3% of rTRTc activity at 100 μm. A concentration-dependent effect on mitochondrial membrane depolarization was observed in T. cruzi epimastigotes treated with compound 9, suggesting this mechanism may be involved in the trypanocidal effect. On the contrary, in L. braziliensis promastigotes treated with compound 14, no mitochondrial depolarization was observed. Our results demonstrate that N-decyl-1,6-hexanediamine and N-tetradecyl-1,4-butanediamine are promising molecules for the development of novel leading compounds against T. cruzi and Leishmania spp., particularly given a possible alternative mechanism of action.
- Subjects :
- Cell Survival
Trypanosoma cruzi
Bone Marrow Cells
Diamines
Biology
Nitric Oxide
Biochemistry
Mice
parasitic diseases
Drug Discovery
medicine
Animals
Amastigote
Leishmania
Membrane Potential, Mitochondrial
Pharmacology
Mice, Inbred BALB C
Tumor Necrosis Factor-alpha
Macrophages
Organic Chemistry
Depolarization
biology.organism_classification
Trypanocidal Agents
Leishmania braziliensis
In vitro
Mechanism of action
Benznidazole
Molecular Medicine
medicine.symptom
medicine.drug
Subjects
Details
- ISSN :
- 17470277
- Volume :
- 82
- Database :
- OpenAIRE
- Journal :
- Chemical Biology & Drug Design
- Accession number :
- edsair.doi.dedup.....a77d12223fa2e9997ced879ea92da528
- Full Text :
- https://doi.org/10.1111/cbdd.12191