Back to Search
Start Over
On the Jäger–Kaul theorem concerning harmonic maps
- Source :
- Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 17:35-46
- Publication Year :
- 2000
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2000.
-
Abstract
- In 1983, Jager and Kaul proved that the equator map u*(x) = (x/\x\,0) : B-n --> S-n is unstable for 3 less than or equal to n less than or equal to 6 and a minimizer for the energy functional E(u, B-n) = integral B-n \del u\(2) dx in the class H-1,H-2(B-n, S-n) with u = u* on partial derivative B-n when n greater than or equal to 7. In this paper, we give a new and elementary proof of this Jager-Kaul result. We also generalize the Jager-Kaul result to the case of p-harmonic maps.
Details
- ISSN :
- 18731430 and 02941449
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Accession number :
- edsair.doi.dedup.....a77a40897afb8a9353349ef2238ec977
- Full Text :
- https://doi.org/10.1016/s0294-1449(99)00103-1