Back to Search Start Over

On the Jäger–Kaul theorem concerning harmonic maps

Authors :
Min-Chun Hong
Source :
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 17:35-46
Publication Year :
2000
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 2000.

Abstract

In 1983, Jager and Kaul proved that the equator map u*(x) = (x/\x\,0) : B-n --> S-n is unstable for 3 less than or equal to n less than or equal to 6 and a minimizer for the energy functional E(u, B-n) = integral B-n \del u\(2) dx in the class H-1,H-2(B-n, S-n) with u = u* on partial derivative B-n when n greater than or equal to 7. In this paper, we give a new and elementary proof of this Jager-Kaul result. We also generalize the Jager-Kaul result to the case of p-harmonic maps.

Details

ISSN :
18731430 and 02941449
Volume :
17
Database :
OpenAIRE
Journal :
Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Accession number :
edsair.doi.dedup.....a77a40897afb8a9353349ef2238ec977
Full Text :
https://doi.org/10.1016/s0294-1449(99)00103-1