Back to Search Start Over

Electronic properties of graphene encapsulated with different two-dimensional atomic crystals

Authors :
Yang Cao
Roman V. Gorbachev
Kostya S. Novoselov
Ali Gholinia
Kenji Watanabe
Andre K. Geim
Artem Mishchenko
Sarah J. Haigh
Rashid Jalil
Goki Eda
A. Wirsig
M. Lozada
J. S. Tu
Peter Blake
T. Taniguchi
Colin R. Woods
Andrey V. Kretinin
C. Hucho
Thanasis Georgiou
Geliang Yu
Freddie Withers
Source :
Nano letters. 14(6)
Publication Year :
2014

Abstract

Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micron-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulphides and hBN are found to exhibit consistently high carrier mobilities of about 60,000 cm$^{2}$V$^{-1}$s$^{-1}$. In contrast, encapsulation with atomically flat layered oxides such as mica, bismuth strontium calcium copper oxide and vanadium pentoxide results in exceptionally low quality of graphene devices with mobilities of ~ 1,000 cm$^{2}$ V$^{-1}$s$^{-1}$. We attribute the difference mainly to self-cleansing that takes place at interfaces between graphene, hBN and transition metal dichalcogenides. Surface contamination assembles into large pockets allowing the rest of the interface to become atomically clean. The cleansing process does not occur for graphene on atomically flat oxide substrates.<br />19 pages, 11 figures, 1 table including Supporting Information

Details

ISSN :
15306992
Volume :
14
Issue :
6
Database :
OpenAIRE
Journal :
Nano letters
Accession number :
edsair.doi.dedup.....a77948601ceb751592814c0ca68ef345