Back to Search
Start Over
Predicting cash holdings using supervised machine learning algorithms
- Publication Year :
- 2022
- Publisher :
- Springer, 2022.
-
Abstract
- This study predicts the cash holdings policy of Turkish firms, given the 20 selected features with machine learning algorithm methods. 211 listed firms in the Borsa Istanbul are analyzed over the period between 2006 and 2019. Multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), decision trees (DT), extreme gradient boosting algorithm (XGBoost) and multi-layer neural networks (MLNN) are used for prediction. Results reveal that MLR, KNN, and SVR provide high root mean square error (RMSE) and low R2 values. Meanwhile, more complex algorithms, such as DT and especially XGBoost, derive higher accuracy with a 0.73 R2 value. Therefore, using advanced machine learning algorithms, we may predict cash holdings considerably. WOS:000796993600001 2-s2.0-85130279042 PMID: 35601748 Social Sciences Citation Index Q1 Article Uluslararası işbirliği ile yapılmayan - HAYIR Mayıs 2022 YÖK - 2021-22 Mayıs
- Subjects :
- Social Sciences and Humanities
İşletme, Yönetim ve Muhasebe (çeşitli)
Social Sciences (SOC)
Turkey
Sosyal Bilimler ve Beşeri Bilimler
SOCIAL SCIENCES, MATHEMATICAL METHODS
SOCIAL SCIENCES, GENERAL
CORPORATE
FIRMS HOLD
DETERMINANTS
CREDIT
Cash holdings
Sociology
PRICES
Accounting
Management of Technology and Innovation
Machine learning
Genel Sosyal Bilimler
Sosyal ve Beşeri Bilimler
Social Sciences & Humanities
Çalışma Ekonomisi ve Endüstri ilişkileri
Sosyoloji
MLNN
Finans
General Social Sciences
FINANCIAL CRISIS
Sosyal Bilimler Genel
POLICY
Labor Economics and Industrial Relations
INSIGHTS
Çalışma Ekonomisi
Labor Economics
Muhasebe
Ekonomi ve İş
ECONOMICS & BUSINESS
İŞ FİNANSI
Sosyal Bilimler (SOC)
Business, Management and Accounting (miscellaneous)
SOSYAL BİLİMLER, MATEMATİK YÖNTEMLER
BUSINESS, FINANCE
AGENCY COSTS
BEHAVIOR
Finance
XGBoost
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....a771030a7d27da6f7891969493d5490c