Back to Search Start Over

Geochemical Controls on the Uranium Cycle in a Lake Watershed

Authors :
Pierre Lefebvre
Arnaud Mangeret
Alkiviadis Gourgiotis
Pascale Louvat
Pierre Le Pape
Pierre Sabatier
Olivier Diez
Charlotte Cazala
Jérôme Gaillardet
Guillaume Morin
Minéralogie Environnementale [IMPMC] (IMPMC_MINENV)
Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC)
Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
Institut de Physique du Globe de Paris (IPGP (UMR_7154))
Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Environnements, Dynamiques et Territoires de Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Source :
ACS Earth and Space Chemistry, ACS Earth and Space Chemistry, 2023, 7 (5), pp.972-985. ⟨10.1021/acsearthspacechem.2c00348⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; Understanding the uranium (U) cycle – reservoirs and processes – at the watershed scale is key to manage contaminated areas, to elucidate ore formation processes as well as to implement paleoenvironmental research. Here, we investigated the different steps of the U cycle, from sources to sinks, and the relative roles of redox processes and organic matter in the control of U mobility in the naturally U-rich small mountainous watershed of Lake Nègre (France). We interpret the U repartition in U reservoirs through chemical, isotopic (δ238U and (234U/238U)) and speciation analyses, in the light of anterior studies of the site. We show that U(VI) originates from the leaching of U-rich rock fractures and is transported in dissolved forms. Wetlands and meadow soils then act as intermediary sinks where U(VI) is complexed by organic matter (up to > 5000 µg/g) and subsequently partly reduced to U(IV). Dissolved U is also supplied to the lake, in addition to particulate and colloidal U resulting from soil physical erosion. After entering the lake, most U(VI)-bearing organic particles settle in the sediments and U(VI) is reduced to U(IV), resulting in high sedimentary U concentrations (up to > 1000 µg/g), while a fraction of U is potentially desorbed from particles. Remaining dissolved U is exported from the watershed through the lake outlet stream. In this high-mountain lake catchment, the U cycle is mainly controlled by organic matter complexation and particulate transport, though U reduction in the lake sediments may help to its long-term immobilization.

Details

Language :
English
ISSN :
24723452
Database :
OpenAIRE
Journal :
ACS Earth and Space Chemistry, ACS Earth and Space Chemistry, 2023, 7 (5), pp.972-985. ⟨10.1021/acsearthspacechem.2c00348⟩
Accession number :
edsair.doi.dedup.....a751b382e67dea87f69a1b24cfea3338
Full Text :
https://doi.org/10.1021/acsearthspacechem.2c00348⟩