Back to Search Start Over

Alkanes increase the stability of early life membrane models under extreme pressure and temperature conditions

Authors :
Judith Peters
Loreto Misuraca
Philippe Oger
Bruno Demé
Institut Laue-Langevin (ILL)
ILL
Microbiology of Extreme Environments (M2E)
Microbiologie, adaptation et pathogénie (MAP)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon
Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
'Communications Chemistry ', vol: 4, pages: 24-1-24-8 (2021), Communications Chemistry, Communications Chemistry, Nature Research 2021, ⟨10.1038/s42004-021-00467-5⟩, Communications Chemistry, Vol 4, Iss 1, Pp 1-8 (2021)
Publication Year :
2021

Abstract

Terrestrial life appeared on our planet within a time window of [4.4–3.5] billion years ago. During that time, it is suggested that the first proto-cellular forms developed in the surrounding of deep-sea hydrothermal vents, oceanic crust fractures that are still present nowadays. However, these environments are characterized by extreme temperature and pressure conditions that question the early membrane compartment’s capability to endure a stable structural state. Recent studies proposed an adaptive strategy employed by present-day extremophiles: the use of apolar molecules as structural membrane components in order to tune the bilayer dynamic response when needed. Here we extend this hypothesis on early life protomembrane models, using linear and branched alkanes as apolar stabilizing molecules of prebiotic relevance. The structural ordering and chain dynamics of these systems have been investigated as a function of temperature and pressure. We found that both types of alkanes studied, even the simplest linear ones, impact highly the multilamellar vesicle ordering and chain dynamics. Our data show that alkane-enriched membranes have a lower multilamellar vesicle swelling induced by the temperature increase and are significantly less affected by pressure variation as compared to alkane-free samples, suggesting a possible survival strategy for the first living forms. Fatty acid membranes are implicated in several hypotheses about the origins of life, but whether their stability towards extremes of temperature, pressure, and ionic strength is sufficient to enable primitive biochemistry remains unclear. Here branched and linear alkanes are shown to stabilise a common model primordial membrane towards high temperatures and pressures

Details

Language :
English
ISSN :
23993669
Volume :
4
Database :
OpenAIRE
Journal :
Communications Chemistry
Accession number :
edsair.doi.dedup.....a747fa8a2f020ab108eee9a4c7296422
Full Text :
https://doi.org/10.1038/s42004-021-00467-5⟩