Back to Search
Start Over
Pharmacological Mechanisms of Shangke Huangshui against Skin and Soft Tissue Infection
- Source :
- Evidence-based complementary and alternative medicine : eCAM. 2022
- Publication Year :
- 2021
-
Abstract
- Background. Skin and soft tissue infections (SSTIs) are a group of common diseases, usually caused by bacteria. Shangke Huangshui (SK) has been widely used to treat various SSTIs diseases for many years, but its mechanism is unclear. Therefore, this study was designed to investigate the anti-infective effect of SK on different skin and soft tissue infection diseases and to explore its underlying mechanism. Methods. The subcutaneous abscess mouse model, the dermal ulcer rat model, and the infectious soft tissue injury rat model were established by injection of Staphylococcus aureus to evaluate the anti-inflammatory and antibacterial effects of SK. Abscess volume, local appearance score and histological changes, bacterial contents, and hydroxyproline concentration in the skin or soft tissue were analyzed. The levels of NO, TNF-α, IL-1β, and IL-8 in the serum and tissue were determined by ELISA method. The mRNA expression levels of TLR2, MyD88, TAK1, NF-κB, AP-1, and other genes were measured with qRT-PCR method, and the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1 was detected by western blot method. Results. SK had an obvious therapeutic effect on skin and soft tissue infections. It reduced the volume of abscess and promoted the healing of skin ulcer, improved pathological phenomena, such as inflammatory infiltration of skin and soft tissue, reduced the levels of white blood cells and NO in the blood, decreased bacteria contents in the skin and soft tissue. Furthermore, SK decreased the mRNA expression of TLR2, MyD88, TAK1, NF-κB and AP-1, and other related genes and also downregulated the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1. Conclusion. The experiments provide evidence that SK can treat skin and soft tissue infection diseases based on its comprehensive antibacterial and anti-inflammatory effects. The therapeutic mechanism may be associated with the inhibition of TLR2/MyD88/NF-κB signaling pathway.
- Subjects :
- Article Subject
Complementary and alternative medicine
Subjects
Details
- ISSN :
- 1741427X
- Volume :
- 2022
- Database :
- OpenAIRE
- Journal :
- Evidence-based complementary and alternative medicine : eCAM
- Accession number :
- edsair.doi.dedup.....a744e12d5f7c44d808268cb24f25012a