Back to Search
Start Over
Comparative Chloroplast Genome Analysis of Impatiens Species (Balsaminaceae) in the Karst Area of China: Insights Into Genome Evolution and Phylogenomic Implications
- Source :
- BMC Genomics, BMC Genomics, Vol 22, Iss 1, Pp 1-18 (2021)
- Publication Year :
- 2021
- Publisher :
- Research Square Platform LLC, 2021.
-
Abstract
- Background Impatiens L. is a genus of complex taxonomy that belongs to the family Balsaminaceae (Ericales) and contains approximately 1000 species. The genus is well known for its economic, medicinal, ornamental, and horticultural value. However, knowledge about its germplasm identification, molecular phylogeny, and chloroplast genomics is limited, and taxonomic uncertainties still exist due to overlapping morphological features and insufficient genomic resources. Results We sequenced the chloroplast genomes of six different species (Impatiens chlorosepala, Impatiens fanjingshanica, Impatiens guizhouensis, Impatiens linearisepala, Impatiens loulanensis, and Impatiens stenosepala) in the karst area of China and compared them with those of six previously published Balsaminaceae species. We contrasted genomic features and repeat sequences, assessed sequence divergence and constructed phylogenetic relationships. Except for those of I. alpicola, I. pritzelii and I. glandulifera, the complete chloroplast genomes ranging in size from 151,366 bp (I. alpicola) to 154,189 bp (Hydrocera triflora) encoded 115 distinct genes [81 protein-coding, 30 transfer RNA (tRNA), and 4 ribosomal RNA (rRNA) genes]. Moreover, the characteristics of the long repeat sequences and simple sequence repeats (SSRs) were determined. psbK-psbI, trnT-GGU-psbD, rpl36-rps8, rpoB-trnC-GCA, trnK-UUU-rps16, trnQ-UUG, trnP-UGG-psaJ, trnT-UGU-trnL-UAA, and ycf4-cemA were identified as divergence hotspot regions and thus might be suitable for species identification and phylogenetic studies. Additionally, the phylogenetic relationships based on Maximum likelihood (ML) and Bayesian inference (BI) of the whole chloroplast genomes showed that the chloroplast genome structure of I. guizhouensis represents the ancestral state of the Balsaminaceae family. Conclusion Our study provided detailed information about nucleotide diversity hotspots and the types of repeats, which can be used to develop molecular markers applicable to Balsaminaceae species. We also reconstructed and analyzed the relationships of some Impatiens species and assessed their taxonomic statuses based on the complete chloroplast genomes. Together, the findings of the current study might provide valuable genomic resources for systematic evolution of the Balsaminaceae species.
- Subjects :
- 0106 biological sciences
0301 basic medicine
China
Genome evolution
Chloroplasts
Genomics
QH426-470
010603 evolutionary biology
01 natural sciences
Genome
Phylogenetic relationship
Nucleotide diversity
Evolution, Molecular
03 medical and health sciences
Genetics
Chloroplast genome
Genome, Chloroplast
Balsaminaceae
Phylogeny
biology
Phylogenetic tree
Research
Comparative analysis
Bayes Theorem
biology.organism_classification
030104 developmental biology
Evolutionary biology
Molecular phylogenetics
Impatiens
TP248.13-248.65
Biotechnology
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- BMC Genomics, BMC Genomics, Vol 22, Iss 1, Pp 1-18 (2021)
- Accession number :
- edsair.doi.dedup.....a7344fd4a380994d699c23d5a09e6502
- Full Text :
- https://doi.org/10.21203/rs.3.rs-132878/v1