Back to Search
Start Over
A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains
- Source :
- Journal of Terramechanics. 96:147-157
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- An immense body of research has focused on path-planning and following of wheeled robots in unstructured surfaces. Nonholonomic robots traveling over deformable terrains together with complex operating conditions, however, pose further challenges in terms of a higher demand for robustness and optimality. In this paper, a Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm is employed for planning an optimal path of a wheeled robot, so as to ensure shortest path from the starting point to the target location together with safety through guaranteed avoidance of collisions with static and dynamic obstacles. The fundamental terramechanics concepts are employed to derive essential forces and moments acting on the wheeled robot. Subsequently, a kineto-dynamic model of the robot is developed for designing a novel robust control algorithm based on an exponential-integral-sliding mode (EISMC) scheme and a RBF-NN approximator. The results revealed that the proposed algorithm is responsive and robust to withstand adverse effects of structured and unstructured uncertainties by using the designed adaptation law according to the Lyapunov stability theorem. The effectiveness of the proposed algorithm is also validated against several reported frameworks.
- Subjects :
- Lyapunov stability
Computer science
Mechanical Engineering
010401 analytical chemistry
PSO
Swarm behaviour
Artificial Intelligence
Path-planning
Terrain
Terramechancis
04 agricultural and veterinary sciences
01 natural sciences
Terramechanics
0104 chemical sciences
Computer Science::Robotics
Robustness (computer science)
Shortest path problem
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
Robot
Motion planning
Algorithm
Subjects
Details
- ISSN :
- 00224898
- Volume :
- 96
- Database :
- OpenAIRE
- Journal :
- Journal of Terramechanics
- Accession number :
- edsair.doi.dedup.....a6e4bf9512994705a9442a575857b0ba
- Full Text :
- https://doi.org/10.1016/j.jterra.2020.12.001