Back to Search Start Over

Novel Utilization of Terminators in the Design of Biologically Adjustable Synthetic Filters

Authors :
Chantal Hoi Yin Cheung
Chiao Hui Hsieh
Hui-Juan Xie
Hsueh Fen Juan
Mei-Ting Lin
Che Lin
Chun-Ying Wang
Bor-Sen Chen
Source :
ACS synthetic biology. 5(5)
Publication Year :
2016

Abstract

Terminators, which signal the end of transcription processes, are typically placed behind the last coding sequence of an operon to prevent interference between transcript units in most biologically synthetic systems. Here, we seek to extend the usability of terminators in genetic system design by using terminators as regulatory genetic parts. Terminators with different impacts on their upstream and downstream genes are characterized in detail via dynamic modeling to predict the behavior of the overall genetic system. Some nonlinear effects of terminators observed in our terminator measurements potentially facilitate regulation of gene expression. Through dynamic modeling in silico, we find that such genetic systems may behave like genetic filters. In agreement with the simulations, we successfully implement genetic high-pass and bandpass filters in vivo, demonstrating the potential of using terminators as regulatory parts. The genetic bandpass filter in this work is implemented through the interdependence between genetic parts, in which the termination efficiency of a terminator varies with the strength of the upstream promoter. This design strategy for a bandpass filter requires fewer base pairs than the conventional strategy of concatenating high-pass and low-pass filters. Our results show that this novel utilization of terminators as regulatory parts may provide a new perspective for efficient design of genetic circuits. We believe that further exploration of the complicated dynamics of terminators is important in the development of synthetic biology.

Details

ISSN :
21615063
Volume :
5
Issue :
5
Database :
OpenAIRE
Journal :
ACS synthetic biology
Accession number :
edsair.doi.dedup.....a6c97e42c8b66c8e9edb050e98b9fed3