Back to Search
Start Over
Interferometric nanoporous anodic alumina photonic coatings for optical sensing
- Source :
- Nanoscale. 7:7770-7779
- Publication Year :
- 2015
- Publisher :
- Royal Society of Chemistry (RSC), 2015.
-
Abstract
- Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM(-1), a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983).
- Subjects :
- Materials science
Nanostructure
Nanoporous
Anodizing
business.industry
Nanotechnology
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Interferometry
Reflectometric interference spectroscopy
Interference (communication)
General Materials Science
Photonics
0210 nano-technology
business
Current density
Subjects
Details
- ISSN :
- 20403372 and 20403364
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- Nanoscale
- Accession number :
- edsair.doi.dedup.....a6a98930913c47f6932e476d2a573c8b
- Full Text :
- https://doi.org/10.1039/c5nr00369e