Back to Search
Start Over
The combination of PD-1 blockade with interferon-α has a synergistic effect on hepatocellular carcinoma
- Source :
- Cell Mol Immunol
- Publication Year :
- 2022
- Publisher :
- Springer Science and Business Media LLC, 2022.
-
Abstract
- BACKGROUND: The efficacy of immune checkpoint inhibitors (ICIs), such as programmed cell death protein-1 (PD-1) or its ligand 1 (PD-L1) antibody, in hepatocellular carcinoma (HCC) is limited, and it is recommended that they be combined with other therapies. We evaluated the combination of pegylated interferon-α (Peg-IFNα) with PD-1 blockade in HCC mouse models. METHODS: We analyzed the effects of Peg-IFNα on tumor-infiltrating immune cells and PD-1 expression in the HCC immune microenvironment and examined the underlying mechanism of its unique effect on the PD-1 pathway. The in vivo efficacy of anti-PD-1 and Peg-IFNα was evaluated in both subcutaneous and orthotopic mouse models of HCC. RESULTS: The combination of Peg-IFNα with PD-1 blockade dramatically enhanced T-cell infiltration, improved the efficacy of PD-1 antibody and prolonged mouse survival compared with PD-1 antibody monotherapy. Mechanistically, Peg-IFNα could recruit cytotoxic CD8(+) T cells to infiltrate the HCC microenvironment by inducing tumor cells to secrete the chemokine CCL4. Nevertheless, the HCC microenvironment quickly overcame the immune responses by upregulating PD-1 expression in CD8(+) T cells via the IFNα-IFNAR1-JAK1-STAT3 signaling pathway. The combination of PD-1 blockade with Peg-IFNα could restore the cytotoxic capacity of CD8(+) T cells and exerted a significant synergistic effect on HCC. CONCLUSION: These results indicate that in addition to initiating the antitumor immune response itself, Peg-IFNα can also generate a microenvironment favoring PD-1 blockade. Thus, the combination of Peg-IFNα and PD-1 blockade can be a promising strategy for HCC.
Details
- ISSN :
- 20420226
- Volume :
- 19
- Database :
- OpenAIRE
- Journal :
- Cellular & Molecular Immunology
- Accession number :
- edsair.doi.dedup.....a692980d3d05739270094c56d2575f92
- Full Text :
- https://doi.org/10.1038/s41423-022-00848-3