Back to Search Start Over

Rapid Aqueous Synthesis of Large‐Size and Edge/Defect‐Rich Porous Pd and Pd‐Alloyed Nanomesh for Electrocatalytic Ethanol Oxidation

Authors :
Hongyou Guo
Ke Guo
Min Han
Dongdong Xu
Jianchun Bao
Yuxiang Teng
Dongping Fan
Source :
Chemistry – A European Journal. 27:11175-11182
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

In this work, a facile aqueous synthesis strategy was used (complete in 5 min at room temperature) to produce large-size Pd, PdCu, and PdPtCu nanomeshes without additional organic ligands or solvent and the volume restriction of reaction solution. The obtained metallic nanomeshes possess graphene-like morphology and a large size of dozens of microns. Abundant edges (coordinatively unsaturated sites, steps, and corners), defects (twins), and mesopores are seen in the metallic ultrathin structures. The formation mechanism for porous Pd nanomeshes disclosed that they undergo oriented attachment growth along the ⟨111⟩ direction. Owing to structural and compositional advantages, PdCu porous nanomeshes with certain elemental ratios (e. g., Pd87 Cu13 ) presented enhanced electrocatalytic performance (larger mass activity, better CO tolerance and stability) toward ethanol oxidation.

Details

ISSN :
15213765 and 09476539
Volume :
27
Database :
OpenAIRE
Journal :
Chemistry – A European Journal
Accession number :
edsair.doi.dedup.....a62a9ad4e38aa713854cd8b5466b445c
Full Text :
https://doi.org/10.1002/chem.202101144