Back to Search Start Over

Conventional and high resolution chemical characterization to assess refinery effluent treatment performance

Authors :
Jacco Koekkoek
Pim E.G. Leonards
Markus Hjort
Graham Whale
K. den Haan
Eleni Vaiopoulou
Aaron D. Redman
E&H: Environmental Chemistry and Toxicology
AIMMS
E&H: Environmental Bioanalytical Chemistry
Source :
Hjort, M, den Haan, K H, Whale, G, Koekkoek, J, Leonards, P E G, Redman, A D & Vaiopoulou, E 2021, ' Conventional and high resolution chemical characterization to assess refinery effluent treatment performance ', Chemosphere, vol. 278, 130383, pp. 1-12 . https://doi.org/10.1016/j.chemosphere.2021.130383, Chemosphere, 278:130383, 1-12. Elsevier Limited
Publication Year :
2021

Abstract

Refinery effluents represent an emission source of hydrocarbons (HCs) and other constituents to the environment. Thus, characterisation of effluent quality in terms of concentrations of key parameters relative to permitted standards is important and for total petroleum hydrocarbons (TPH), the specific composition of the HC mixture can affect its toxicity to aquatic organisms. Therefore, this study was designed to analyse TPH, benzene, toluene, ethyl benzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), (bio) chemical oxygen demand, total nitrogen, total suspended solids and selected metals before, and after, treatment steps to demonstrate removal efficiencies across 13 refineries with variable wastewater treatment systems. Final discharge concentrations of the measured parameters were by 97% within the so called Best Available Technique Associated Emission Levels (BAT-AELs). Further, TPH composition was characterised using high-resolution two-dimensional gas chromatography (GCxGC) analysis to understand the mass distribution by carbon number and specific chemical class. Measurements were compared to SimpleTreat model predictions for validation. SimpleTreat successfully predicted the shape of the effluent composition since it is essentially a removal constant applied to the influent composition. The predictions were of similar magnitude as, or were greater than, the effluent concentrations since SimpleTreat is based on typical performance and is intended to be conservative. This was especially true for aromatic constituents. Reduction in potential HC exposures also coincided with a decrease in predicted toxicity using a mechanistic oil toxicity model, PETROTOX. Overall, the results indicate that EU petroleum refineries are likely to achieve a high performance level regarding effluent treatment.

Details

Language :
English
ISSN :
00456535
Volume :
278
Database :
OpenAIRE
Journal :
Chemosphere
Accession number :
edsair.doi.dedup.....a614393a8a0b6ae80b9ba4521811b46c
Full Text :
https://doi.org/10.1016/j.chemosphere.2021.130383